
Internet Connection Splitting: What’s Old is New Again

Gina Yuan
Stanford University

Thea Rossman
Stanford University

Keith Winstein
Stanford University

Abstract
In the 1990s, many networks deployed performance-

enhancing proxies (PEPs) that transparently split TCP con-
nections to aid performance, especially over lossy, long-delay
paths. Two recent developments have cast doubts on their
relevance: the BBR congestion-control algorithm, which de-
emphasizes loss as a congestion signal, and the QUIC trans-
port protocol, which prevents transparent connection-splitting
yet empirically matches or exceeds TCP’s performance in
wide deployment, using the same congestion control.

In light of this, are PEPs obsolete? This paper presents a
range of emulation measurements indicating: “probably not.”
While BBR’s original 2016 version didn’t benefit markedly
from connection-splitting, more recent versions of BBR do
and, in some cases, even more so than earlier “loss-based”
congestion-control algorithms. We also find that QUIC imple-
mentations of the “same” congestion-control algorithms vary
dramatically and further differ from those of Linux TCP—
frustrating head-to-head comparisons. Notwithstanding their
controversial nature, our results suggest that PEPs remain
relevant to Internet performance for the foreseeable future.

1 Introduction
A stylized history of connection-splitting over the Internet
could go roughly as follows: In the 1970s, TCP was designed
as a host-to-host transport for flow-controlled reliable byte
streams. In the late 1980s, TCP implementations added con-
gestion control [24] to respond to network-path limitations
and contention, with indications of packet loss as the primary
congestion signals. As Internet use exploded in the 1990s,
it became apparent that contemporary TCP implementations
performed poorly over long paths with packet loss. By the
late 1990s, many network operators deployed commercial
“TCP accelerators,” also known as “performance-enhancing
proxies” [17, 21], to improve customers’ TCP throughput.
These proxies transparently split a TCP connection in two,
providing an intermediate point of acknowledgment and re-
transmission and transforming an end-to-end TCP connection
into two independent connections.

PEPs were marketed as improving users’ throughput, es-
pecially where a PEP splits a high-delay, lossy path into two
segments, each with less delay or less loss. Past surveys found
connection-splitting PEPs deployed on large numbers of wire-
less and satellite networks [17, 21]. But for almost as long as
these PEPs have existed, purists have criticized their alleged

CUBIC
(2006)

BBRv1
(2016)

BBRv2
(2019)

BBRv3
(2023)

TCP Congestion Control Algorithms

0.00
0.25
0.50
0.75
1.00

Bo
ttl

en
ec

k 
Ut

iliz
at

io
n 100ms 0% 20Mbit/s, 1ms 4% 20Mbit/s

Split End-to-End

(a) Asymmetric, lossy last-mile.

CUBIC
(2006)

BBRv1
(2016)

BBRv2
(2019)

BBRv3
(2023)

TCP Congestion Control Algorithms

0.00
0.25
0.50
0.75
1.00

Bo
ttl

en
ec

k 
Ut

iliz
at

io
n 100ms 2% 20Mbit/s, 1ms 2% 20Mbit/s

(b) Asymmetric, both path segments are lossy.

CUBIC
(2006)

BBRv1
(2016)

BBRv2
(2019)

BBRv3
(2023)

TCP Congestion Control Algorithms

0.00
0.25
0.50
0.75
1.00

Bo
ttl

en
ec

k 
Ut

iliz
at

io
n 40ms 2% 40Mbit/s, 40ms 2% 40Mbit/s

(c) Symmetric, both path segments are lossy.

Figure 1: Three classes of network settings in which the throughput
of a long-lived data transfer using BBRv3 benefits significantly from
connection-splitting. While the throughput of TCP using BBRv1
may not have benefitted from a PEP, as the BBR algorithm has
evolved over time, it has also made splitting pertinent again. In two
of these classes, split BBRv3 even achieves high bottleneck link rate
utilization where split CUBIC does not. IQR of n = 20.

benefits as exaggerated or unfair, sensitive to the details of an
endpoint’s congestion-control scheme, contrary to end-to-end
arguments [42], and likely to lead to ossificiation [13, 38].

Two more-recent developments have put PEPs on the back
foot. The QUIC transport protocol, standardized in 2021 [23],
is encrypted end-to-end and, unlike TCP, its connections can’t
be split by a transparent proxy—but its wide deployment



by major traffic sources (particularly Google) in the 2010s
didn’t produce a measured reduction in performance, com-
pared with TCP connections that do benefit from PEPs in the
field [31]. If PEPs had really been aiding TCP connections
all this time, QUIC could have been expected to experience
lower sustained throughput over such paths (compared with
TCP connections between the same endpoints, using the same
congestion-control schemes).

Furthermore, the BBR congestion-control scheme [8], first
released in 2016, now controls a large percentage of Internet
traffic (both TCP and QUIC) [51] and puts less emphasis on
packet loss as a congestion signal than older schemes in wide
deployment, such as CUBIC. Because much of PEPs’ benefit
comes from splitting up long, lossy paths for the benefit of
“loss-based” schemes, it has been suggested that BBR has led
to a sharp decline in the use of PEPs [25].

Do BBR and QUIC make connection-splitting obso-
lete? In this paper, we present findings that suggest that nei-
ther of these developments should be regarded as reliable;
Connection-splitting may yet play a performance-enhancing
role on the Internet, despite its controversial nature.

We conduct a measurement study in emulation to investi-
gate what kinds of congestion control schemes, network sce-
narios, and transport protocols may still experience increased
sustained throughput from connection-splitting. We aid our
analysis with a split throughput heuristic for predicting the
throughput of a split connection, based on the measured end-
to-end throughput of each segment on the split path. We aim
to (1) explore a wide parameter space of network settings and
congestion control schemes and (2) reason about encrypted
transport protocols (QUIC) that we cannot directly measure.

We present three major findings:

Finding 1: Splitting has become significantly more bene-
ficial to TCP BBR since it was initially released in 2016.
We confirm that BBR’s initial “v1” release does not bene-
fit markedly from splitting, unlike earlier congestion-control
schemes. But as the BBR algorithm has evolved into BBRv2
in 2019 and now BBRv3 in 2023, it has also evolved to be-
have more conventionally in the sense that it benefits from
being split—just like more traditional, loss-based congestion
control schemes such as CUBIC (Fig. 1).

The regression in split throughput follows directly from the
regression in end-to-end throughput, via the heuristic. While
BBRv1 nearly always achieves full utilization, BBRv3 sees
lower utilization in lossy settings, leaving more to gain from
splitting. The end-to-end regression is because BBRv3 has
increased its loss sensitivity to coexist fairly with “loss-based”
schemes such as Reno and CUBIC [6, 50, 54]. Thus, we find
that BBR and its split behavior continue to evolve, and that the
model-based BBR algorithm has not made the performance
enhancements of connection-splitting obsolete.

Finding 2: There exist classes of network paths where
TCP BBR would significantly benefit from splitting but

TCP CUBIC would not. Splitting not only benefits BBRv3
in all the same scenarios as CUBIC (in terms of long-lived
throughput), it also benefits BBRv3 in new scenarios. In par-
ticular, there exist classes of network settings where the CCA
achieves a very low bottleneck link rate utilization without a
PEP, but a high bottleneck link rate utilization with a PEP.

More specifically, in addition to edge deployments with a
lossy last-mile (Fig. 1a), BBRv3 can also benefit from split-
ting in scenarios where there is loss on both path segments
(Fig. 1b), and when the connection-splitter is located farther
from the edge (Fig. 1c). This suggests that in these network
classes, simple split BBRv3 can replace the proprietary pro-
tocols that have traditionally been used to address middle-
mile loss, particularly in satellite and wireless ad-hoc net-
works [2,17,39]. We should continue to evaluate the behavior
of split CCAs in new types of networks, especially in space.

Finding 3: Implementations of the “same” congestion-con-
trol schemes in QUIC vary significantly, and further differ
those of Linux TCP—frustrating attempts to directly
compare performance between QUIC and TCP. In an
initial study of three QUIC implementations, we find that the
end-to-end behaviors of the same congestion control schemes
vary significantly by implementation. The implementations
vary in both baseline performance and sensitivity to loss and
delay. By applying the split throughput heuristic, we find that
some CUBIC implementations can actually benefit in the
same classes of network paths as TCP BBRv3. We also find
that BBR is challenging to implement, with various BBRv3
implementations exhibiting non-uniform end-to-end behavior
and thus no clear trend in split behavior. We argue that the
benefits of in-network assistance should be considered along
with not just a CCA, but their specific implementations.

Our initial evaluation suggests that the performance improve-
ments of connection-splitting remain relevant in the context
of today’s model-based congestion control algorithms, en-
crypted transport protocols, and satellite and wireless ad-hoc
network settings. As congestion-control schemes continue
to evolve, we urge researchers to refer to them by algorith-
m/implementation/version, not just “BBR” or even “QUIC
BBRv1”. We urge the community to create a performance
test suite for an implementation to be able to claim that it
conforms to a particular congestion-control standard. Finally,
we hope that this work motivates the community to pursue
protocol-agnostic PEPs that achieve the performance benefits
of in-network assistance without the ossification downsides.

2 Background
In this section, we provide additional context on some con-
cepts that we refer to throughout the text.

Performance-enhancing proxies. The idea of in-network
assistance has long brought pain to the hearts of Internet
researchers, protocol designers, and network operators. In



particular, the word “middleboxes” is often associated with
NATs, firewalls, and other policy enforcers that modify or
inspect data in ways that break end-to-end behavior. A sub-
stantial percentage of Internet paths are affected by feature or
protocol-breaking policies of middleboxes [13].

In contrast, we refer specifically to the type of assistance
provided by performance-enhancing “proxies”, or PEPs, that
transparently split a TCP connection in two [17]. While PEPs
still interfere with end-to-end transport mechanisms, their goal
is to enhance the user experience by maximizing performance,
as opposed to enforce security or routing policies.

Connection-splitting PEPs can enhance performance in
several ways. By providing an intermediate point of acknowl-
edgment and retransmission, PEPs reduce the length of the
feedback loop for signals of loss and congestion. The PEP
also allows each side of the split connection to better optimize
congestion control and flow control for network conditions
local to the path segment. We can expect PEPs to impact a
variety of performance metrics, including startup time, packet
jitter, retransmission overheads, and more. In this paper, we
focus only on the impact of connection-splitting on the sus-
tained throughput of long-lived data transfers.

Congestion control. Congestion control was originally de-
ployed in the 1980s to manage the explosive growth of the
Internet [24]. Foundational algorithms such as slow start and
fast retransmit eventually became part of the Tahoe conges-
tion control scheme. Variants such as NewReno and CUBIC
emerged over time to improve performance with fairness [18].
CUBIC is the default congestion control module for TCP
in the Linux kernel, and widely deployed. It is the primary
“loss-based” congestion control scheme that we evaluate.

The word “TCP” is sometimes used synonomously with the
congestion control algorithms that it implements. In reality,
the two are distinct, though deeply intertwined. For example,
the QUIC transport protocol implements many of the same
algorithms as TCP to manage network traffic, even though
it runs over UDP [23]. In this paper, we refer to “TCP” and
“QUIC” as the transport protocols, “Linux TCP” as the imple-
mentation of TCP in the Linux kernel, and congestion control
schemes as the particular manifestations of a congestion con-
trol algorithm in a transport protocol implementation.

BBR. Today, the focus on congestion control has shifted
towards BBR. BBR is sometimes referred to as a “model-
based” congestion control scheme because it relies on a funda-
mentally different approach of modeling network bandwidth
and round-trip time. It does not use packet loss as the pri-
mary signal for congestion. Google initially presented BBR
in 2016 as addressing the problems of CUBIC in high-speed
networks [7].

Over time, BBR encountered controversy for its unfairness
towards loss-based schemes [4, 40, 50]. In response, “v1” of
BBR has now evolved into BBRv2 in 2019 and BBRv3 in
2023, driven by efforts at Google. Today, Google recommends

that BBRv1 and BBRv2 be deprecated in favor of BBRv3 [6].
BBR is also widely deployed [15, 51]. Google has con-

tributed BBR implementations to the Linux kernel, and Ama-
zon, Akamai, Meta, and Cloudflare CDNs all use BBRv1
for TCP. At Google, BBRv3 is used in all google.com and
YouTube public Internet traffic with TCP, and is currently
being A/B tested against BBRv1 in Google QUIC traffic [6].
It is estimated that 40% of traffic used BBR in 2019 [37].

Since 2017, there have been ongoing efforts to standardize
BBR in the IETF [9]. However, progress has been slow. The
Internet draft goes years or months at a time without an update
at the mercy of Google contributors. While companies have
been quick to adopt BBR in Linux TCP, adoption in QUIC
has been slower. Anecdotally, some have resorted to reverse
engineering the Linux implementation, and some such as
Cloudflare, Meta, and Cisco are actively experimenting with
variants of BBRv2+ in their QUIC stacks [15].

QUIC. The QUIC transport protocol was originally devel-
oped by Google in 2012 to improve performance for HTTPS
traffic and to enable the rapid evolution of transport mecha-
nisms. QUIC is implemented over UDP, and moves conges-
tion control development from kernel space to user space.

As of 2021, QUIC is now a standards-track RFC [23] with
widespread deployment and interoperability testing [46]. It
is estimated that 8.4% of global websites support QUIC [49],
many of them major traffic sources such as Cloudflare. Still,
many high-speed flows remain on TCP due to better TCP
hardware capabilities and “per-origin” caching, which com-
plicates multi-CDN deployments that mix protocols.

Evaluations of QUIC at the Internet scale generally show
improved performance compared to TCP, except in satellite
networks. Features like zero-RTT connection establishment
and stream multiplexing enable measured improvements in
search latency, rebuffer rate, and other video playback metrics
at Google [31]. Satellite network operators, on the other hand,
experience strife when it comes to QUIC. Several studies have
measured the negative impact of encryption on performance
in split satellite environments [2, 26, 30, 32].

3 The Split Throughput Heuristic
When initially considering which network scenarios to evalu-
ate in our emulation study, we discovered it to be non-trivial
to pick scenarios that would lead to a general understanding
of the throughput of a congestion control scheme in a split
setting. It is challenging to select which network settings and
combinations of path segments to evaluate, as the parameter
space for combinations of path segments can be quite large.
Also, not all CCA implementations can be trivially split.

For this paper, we refer to throughput as the throughput of a
long-lived data transfer in an emulated network, using a single
flow. We do not evaluate other metrics such as startup time,
retransmission overheads, or short-lived data transfers, which
have been of interest to PEPs and could also be impacted by
connection-splitting. When discussing throughput, we refer



to end-to-end throughput as the throughput of an end-to-end
connection, and split throughput as the throughput of the same
connection when there is a connection-splitting PEP.

We realized that while split throughput is not necessarily
well understood for any combination of CCA, transport pro-
tocol, and network setting, the end-to-end throughput often is.
We make the following insight based on an ideal setting:

Split Throughput Heuristic: We can estimate the
long-lived “split throughput” of a connection by mea-
suring the long-lived “end-to-end throughput” on each
segment of the split path and taking the minimum.

Figure 2: A heuristic for evaluating split behavior from end-to-end
behavior in an emulated network.

Thus if we know the throughput of the much smaller parame-
ter space of end-to-end connections, we can easily derive:

1. The split throughput of a CCA on a network path com-
posed of two path segments,

2. The end-to-end throughput on the network path,
3. The expected throughput benefit of using a connection-

splitting PEP on the network path.

Furthermore, it is impossible to quantitatively evaluate the
split throughput of encrypted transport protocols without cre-
ating a custom and explicit connection-splitting PEP. As a
result, it is challenging to establish a baseline for the through-
put that is potentially achievable by QUIC with in-network
assistance, leaving many studies to compare QUIC only to
split TCP [2, 48, 52]. The split throughput heuristic allows us
to estimate the throughput of encrypted transport protocols
using knowledge about its end-to-end throughput, without
actually splitting the connection.

In §6, we discuss potential sources of error in the heuristic,
including the lack of consideration of the queue configuration
on the proxy or the placement of the bottleneck link relative to
the data sender. However, we believe there is a design tradeoff
in accuracy versus simplicity.

In the rest of this section, we first describe how to use this
heuristic to analyze the split throughput benefit in a single
network setting, without having to run an emulation with a
connection splitter. Then we describe how we cache emu-
lation results for an end-to-end parameter space to enable a
more open-ended analysis of CCAs over a variety of networks.
Finally, we discuss the limitations of our methodology using
the heuristic, and propose possible extensions.

3.1 Analyzing Split Throughput Benefit in a
Single Network Setting

Given a network model of the two path segments that
compose an end-to-end network path, we would like to be
able to estimate the expected throughput benefit of using a

class NetworkModel:
def __init__(self, delay, bw, loss):

self.delay = delay
self.bw = bw
self.loss = loss

def compose(s1: NetworkModel,
s2: NetworkModel) -> NetworkModel:

delay = s1.delay + s2.delay
bw = min(s1.bw, s2.bw)
loss = s1.loss * (1-s1.loss)*s2.loss
return NetworkModel(delay, bw, loss)

def throughput(s: NetworkModel) -> float:
return run_emulation(s)

Listing 1: An interface for modeling a network path and estimating
throughput. The compose() function models an end-to-end network
path from two path segments. The throughput() function obtains
a throughput measurement for a path segment.

def pred_split_throughput(s1: NetworkModel,
s2: NetworkModel) -> float:

return min(throughput(s1), throughput(s2))

def pred_e2e_throughput(s1: NetworkModel,
s2: NetworkModel) -> float:

s = compose(s1, s2)
return throughput(s)

Listing 2: Functions that apply our simplified network model and
the split throughput heuristic (Fig. 2) to predict split and end-to-end
throughput, using the interface in Listing 1.

connection-splitting PEP between the two segments. In our
emulation study, our simplified network model consists of
three parameters: delay, bandwidth, and loss.

We explicitly define the interface we use to query split
and end-to-end throughput in Listings 1 and 2. In addition to
the network model, we implement functions to compose() a
model of an end-to-end network path from two path segments
and to query the end-to-end throughput() of a segment.

The compose() function. Since our network model con-
sists of three parameters, we describe how to compose each
of these parameters to model the end-to-end network path.
Bandwidth is the minimum of the two bandwidths, which is
the bottleneck. (We may also refer to “bandwidth” as “link
rate.”) Delay is just additive. If we think of loss as indepen-
dent random loss, then the composition of the two is loss =
loss1+(1− loss1) · loss2 = loss1+ loss2− loss1 · loss2.

Note that many combinations of path segments can com-
pose to the same end-to-end network path. This makes sense
because regardless of where on the network path loss occurs
or which path segment has the bottleneck bandwidth, from an
end-to-end perspective, the network properties look the same.



Parameter Values Unit

Bandwidth [10, 20, 30, 40, 50] Mbit/s
Delay [1, 20, 40, 60, 80, 100] ms
Loss [0, 1, 2, 3, 4] %

Table 1: Network parameter space for the 5 ·6 ·5 = 150 combina-
tions of network settings that we analyze in §5. These values attempt
to realistically reflect network settings in which we’d see a PEP.

The throughput() function. This is the throughput of a
long-running HTTPS connection in a mininet emulation.
The emulated network is parameterized by the network model
of a single path segment, and the HTTPS implementation
uses the congestion control scheme of interest. We describe
additional details about the emulation in §4.

Calculating the split improvement. Listing 2 demon-
strates how we can estimate the split throughput benefit using
the interface in Listing 1. We pred_split_throughput()
by taking the minimum measured throughput on each network
path segment, and pred_e2e_throughput() by composing
the path segments into an end-to-end network path and us-
ing the measured throughput of that network path. The split
throughput benefit is just how much the split throughput has
improved (if it has) relative to the end-to-end throughput.

3.2 Caching Measurements for Analysis
While we can now predict split throughput for congestion
control schemes which are not easily splittable, evaluating
split throughput on a variety of network settings still requires
running emulations for each query. In order to speed up our
analysis, we select a parameter space of delay, bandwidth,
and loss within our network model and cache the end-to-end
emulation results for this parameter space. We describe our
choice of parameter space and other modifications as follows:

Selecting a parameter space. We select a range of val-
ues we thought would realistically reflect network settings in
which we’d see a PEP (Table 1). We select propagation delays
from 1 ms for a Wi-Fi last hop to 100 ms to reflect the longer
RTTs of a satellite connection. Bottleneck bandwidths range
from 10 to 50 Mbit/s for a single connection, and are within
the CPU constraints of emulation. Random loss rates range
from 0% for a stable connection to 4% for random loss caused
by e.g., wireless interference and extraterrestrial weather.

Modifying the compose() function. We make some subtle
changes to the compose function to keep composed network
models within our parameter space. In some sense, each pa-
rameter e.g., delay, can be thought of as an algebraic group
where the operator function is defined in compose().

For path segments with small delays (1 ms), we consider
the composed path segment to just have the delay of the longer
segment, so we can have segments with 1 ms delay. For loss,
note that when loss rates are small, loss1 · loss2 is negligibly

small. In our case, the loss is always below 4%, so we omit
the term in the composition and loss becomes additive.

Collecting data efficiently. For some CCAs, we expect a
large number of network settings in the parameter space to
have extremely low throughput. Thus we set a utilization
threshold of 5% of the link rate below which we are not
interested in the exact throughput of that network setting.

To more efficiently build the cache, we run a search al-
gorithm on the parameter space to explore faster network
settings first. The initial network setting we evaluate has the
lowest delay, bandwidth, and loss. We explore adjacent data
points if and only if the current data point has not timed out.

3.3 Limitations
Although our methodology is more efficient for evaluating
many network settings and enables the exploration of the-
oretical scenarios, caching measurements in emulation still
takes non-negligible time. A much faster method to estimate
sustained throughput would be to use a theoretical model,
such as the TCP macroscopic model for AIMD schemes [36].
However, this method does not reflect the nuances of im-
plementation, and as Mathis states himself, new models are
needed for BBR and modern paradigms [34, 35].

Another limitation is our simplified network model and
emulation testbed. One could incorporate more parameters
into the network model, such as the fluctuating bandwidths
of cellular networks [20], or how BBR incorporates ACK
aggregation [5]. Another idea is to generate end-to-end mea-
surements from real testbeds instead of emulation. We believe
these challenges are not limited to emulation studies on split
performance, and hope to use the much more well-understood
space of end-to-end behavior to extrapolate split behavior.

We acknowledge that we only test connections in a single-
flow environment. This limits what we can say about inter-
flow fairness, but we can still infer some aspects from how
congestion-control schemes respond to loss and delay in iso-
lation, a classical concept known as “TCP friendliness” [19].
While split connections reduce retransmissions by buffering
on the path, their high throughput may also make them un-
fair. There may also be different fairness implications when
combining split with end-to-end connections. If every connec-
tion is split, then we refer to other studies for understanding
fairness at scale for each side of the concatenation [40].

We also acknowledge that TCP is not limited to bulk data
transfers, and that it would be valuable to study other metrics
that could be impacted by connection-splitting, such as startup
time, packet jitter, and retransmission overheads.

Finally, our heuristic makes the simplified assumption that
we can identify the bottleneck path segment based on the min-
imum measured throughput. In reality, the ability of a data
sender to sustain that throughput depends on its ability to sat-
urate the send buffer. This is particularly true for data senders
farther along the network path, as their behavior will depend
on the queue configuration and the burstiness of previous



Figure 3: Two-segment network topology in mininet. The middle
node splits the path into two segments with different properties.

CCA Implementation

BBRv3 Linux TCP v6.4.0+ google-bbr/v3 fork
BBRv2 Linux TCP v6.4.0+ google-bbr/v2alpha fork
BBRv1 Linux TCP v5.15.0-122-generic
CUBIC Linux TCP v5.15.0-122-generic
BBRv3 Google quiche v131.0.6728.1
BBRv1 Google quiche v131.0.6728.1
CUBIC Google quiche v131.0.6728.1
BBRv2 Cloudflare quiche v0.14
BBRv1 Cloudflare quiche v0.14
CUBIC Cloudflare quiche v0.14
BBRv2 IETF picoquic 29c7c53
BBRv1 IETF picoquic 29c7c53
CUBIC IETF picoquic 29c7c53

Table 2: The congestion control schemes and transport protocol
implementations we evaluate in the measurement study.

senders. We explore this more in §6.

4 Measurement Methodology
We want to evaluate different congestion control schemes in
a variety of network settings. To do this, we run emulation ex-
periments in mininet with simple HTTPS clients and servers
to measure the throughputs of long-lived data transfers. In
this section, we describe our emulated network configurations,
HTTPS endpoints and PEP, and other specifications.

Network configuration. We used two linear network
topologies: a one-segment topology for caching end-to-end
measurements and a two-segment topology for evaluation
with a connection-splitting PEP (Fig. 3). Both have a client
and server node at each end. The two-segment topology addi-
tionally has a router node in between. Each path segment has
a bridging node to emulate network properties on the link.

We parameterize each path segment in three dimensions:
delay, bandwidth, and a random loss rate. We configure the
network properties on the bridging nodes’ egress interfaces,
using tc-netem to set delay and random loss, and tc-htb to
set bandwidth. Additionally, we use tc-qdisc to configure
the queues to use RED1, which is the source of congestive loss.
Each link is symmetric in the uplink and downlink directions.
For some versions of BBR, we set an fq qdisc on the host
nodes’ egress interfaces for pacing.

1We apply RED and not droptail because it gives more continuous feed-
back about loss for congestion control, and is commonly used in core routers.
We also do not need the multi-flow and low-delay properties of other queue
disciplines. We use RED in adaptive harddrop mode with a maximum
queuing delay of ≈ 1 BDP. Exact parameters are available in the code.

Host configuration. We create simple HTTPS wrappers
around each transport protocol implementation to evaluate
the congestion control schemes in Table 2. The TCP endpoints
use the Python http module. For the QUIC implementations,
we modify comparable client/server applications from each
repository. With the exception of enabling TCP pacing where
required by BBR, we use “default values” for tunable param-
eters, considering these to be part of each implementation.

In TCP, we set the CCA by using a specific Linux kernel
version and loading the congestion control module. We use
the default kernel’s implementations of CUBIC and BBRv1,
and Google’s kernel fork for BBRv2 and BBRv3 (Table 2).

In QUIC, we simply select the CCA as a command-line ar-
gument to the user space implementation. We evaluate Google
quiche [16], Cloudflare quiche [10], and picoquic [22].
Google and Cloudflare quiche are their production imple-
mentations of the same name, and picoquic is a minimalist
implementation based on the IETF spec. All three include
CUBIC and BBRv1 implementations, as well as some form of
BBRv2 or BBRv3, which is still undergoing standardization.

For the transparent, connection-splitting TCP PEP, we use
PEPsal [3]. PEPsal intercepts the SYN packet during the
three-way handshake and forms separate TCP connections
with each endpoint, copying data between the two sockets.
Note that discussions of split QUIC are based only on the
split throughput heuristic and do not use an actual splitter.

Experiment specification. In each experiment, the HTTPS
client requests a specific number of bytes to be transferred
from the server in the HTTPS payload. This number corre-
sponds to the amount of data that can be transmitted through
the bottleneck link over a 10-second period. We have found
this to be sufficiently large to reflect sustained throughput.

In practice, we report the "single-stream goodput" calcu-
lated as the number of application-layer bytes received (ex-
cluding HTTPS headers) divided by request completion time
(from when the client sends a request to when it receives
a complete response). Due to header overhead and request
latency, this metric will never equal the link rate.

Machine specification. All experiments use CloudLab [12]
x86_64 rs630 nodes in the Massachusetts cluster running
Ubuntu 22.04.2. The nodes use the default Linux kernel
v5.15.0-122-generic, except for TCP BBRv2 and BBRv3.

5 Results
In our emulation measurement study, we aim to answer three
questions to gain a more comprehensive understanding of the
relevance of connection-splitting with modern networks:

1. Has the model-based BBR algorithm made the through-
put enhancements of connection-splitting obsolete?

2. Are there classes of network settings where BBR benefits
significantly from splitting but CUBIC does not?

3. How does CCA implementation impact end-to-end be-
havior, and therefore split behavior?



0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.92 0.86 0.77

0.93 0.45 0.28 0.22 0.18

0.91 0.25 0.15 0.12 0.09

0.89 0.18 0.11 0.08 0.07

0.87 0.14 0.08 0.06 0.05

0.85 0.11 0.07 0.05 0.04

TCP CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
(a) TCP CUBIC.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.95 0.94 0.92 0.91

0.92 0.93 0.92 0.90 0.91

0.91 0.90 0.89 0.85 0.86

0.88 0.86 0.85 0.80 0.79

0.86 0.85 0.83 0.79 0.77

0.84 0.81 0.79 0.75 0.76

TCP BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(b) TCP BBRv1.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.93 0.91 0.89 0.83

0.92 0.83 0.70 0.57 0.42

0.88 0.78 0.65 0.52 0.46

0.86 0.74 0.63 0.54 0.45

0.83 0.77 0.69 0.60 0.51

0.81 0.75 0.68 0.61 0.50

TCP BBRv2, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(c) TCP BBRv2.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.94 0.90 0.88 0.85

0.91 0.83 0.70 0.61 0.49

0.89 0.81 0.74 0.65 0.53

0.88 0.77 0.73 0.64 0.54

0.85 0.79 0.72 0.64 0.55

0.82 0.77 0.69 0.58 0.49

TCP BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(d) TCP BBRv3.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.94 0.90 0.88 0.85

0.91 0.83 0.70 0.61 0.49

0.89 0.81 0.74 0.65 0.53

0.88 0.77 0.73 0.64 0.54

0.85 0.79 0.72 0.64 0.55

0.82 0.77 0.69 0.58 0.49

TCP BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

Figure 4: The link rate utilization calculated as the ratio of achieved goodput to link rate for various TCP CCAs in an emulated network path,
at various loss rates and one-way delays, at 10 Mbit/s. CUBIC is the most sensitive to loss and delay, while BBRv1 is the most aggressive and
achieves the highest utilizations; BBRv2 and BBRv3 are more sensitive to loss than BBRv1 and utilization starts to suffer (left to right). CCAs
tend to achieve lower utilizations, though higher absolute goodputs, as the link rate increases (Appendix A). Median of n = 20 trials.

To recap our measurement methodology, we have a method
for measuring the throughput of TCP connections in emula-
tion both with and without a transparent PEP. We also have
the ability to estimate throughput both with and without a
generic connection splitter, for both TCP and QUIC, based on
knowledge of the network model of each path segment, and
the measured end-to-end throughput on each segment.

For our analysis, we cache measurements for the end-to-
end network parameters in Table 1 and the congestion con-
trol schemes in Table 2. We also run experiments in the
two-segment network topology to validate some of these
predictions. Raw data for the end-to-end behavior of each
CCA implementation are available in Appendix A. Our em-
ulation benchmarks are also publicly available on GitHub:
https://github.com/StanfordSNR/connection-splitting.

5.1 Finding: Splitting has become significantly
more beneficial to TCP BBR since it was
initially released in 2016.

Has the model-based BBR algorithm made the throughput
enhancements of connection-splitting obsolete? We find this
line of thought has some truth with the initial release of TCP
BBRv1 in 2016. But as the BBR algorithm has evolved into
BBRv2 in 2019 and now BBRv3 in 2023, it has also evolved to
behave more conventionally in the sense that it benefits from
being split—just like more traditional, loss-based congestion
control schemes such as CUBIC.

Fig. 1 shows three different network settings in which
BBRv2 and BBRv3 show significant throughput gains from
connection-splitting. When BBRv1 was released, its through-
put both with and without the connection-splitter were roughly
the same, and nearly achieved the bottleneck link rate. With
BBRv2 and BBRv3, the end-to-end throughput drastically de-
teriorated, behaving more like CUBIC than BBRv1. However,
the split throughput remained relatively high, suggesting that
BBRv3 today would still benefit from connection-splitting.

Analysis. To explore why CUBIC and BBRv3 benefit from
splitting but BBRv1 does not, we analyze end-to-end through-

puts of each CCA and apply the split throughput heuristic
(Fig. 2). As described in §3, this methodology allows us to
study split settings by measuring the much smaller parameter
space of end-to-end connections. We find that connection-
splitting is likely to improve throughput on lossy paths for
CUBIC, BBRv2, and BBRv3 connections, but not for BBRv1.

Fig. 4 visualizes our cached end-to-end measurements as
link rate utilization heatmaps of loss vs. delay. Here is an
example for how to interpret these graphs using Fig. 4d. The
top-left cell represents a 100 ms 0% segment with 0.82 uti-
lization of the 10 Mbit/s link rate, and the bottom-right cell
represents a 1 ms 4% segment with 0.85 utilization of the
10 Mbit/s link rate. The predicted split utilization of a net-
work path composed of these two segments is just 0.82, the
minimum. The two cells compose to the top-right cell, which
represents a 100 ms 4% 10 Mbit/s segment with an end-to-end
utilization of 0.49. Since 0.82 > 0.49, we say that splitting
has improved the throughput of this network path.

BBRv1 achieves high link rate utilization in all settings
(Fig. 4b), showing it has little to gain from splitting. In fact,
previous studies have shown that BBRv1 achieves ≈85% link
utilization regardless of loss (same as our findings) before
it reaches a cliff point at around 20% loss [4, 8]. This may
be why it appears that splitting in lossy settings is now obso-
lete with BBR. However, one should note that BBRv1’s high
throughput has long been attributed to its aggressiveness and
unfairness to legacy algorithms [4, 50], which is what led to
the changes in BBRv2 and BBRv3.

While BBRv2 is a large departure from BBRv1, BBRv3 has
been described as BBRv2 with bugfixes and performance tun-
ing [6], which supports why the two are so similar. We focus
on BBRv3 since Google hopes to now deprecate BBRv2 [6].

BBRv3 is more sensitive to loss than its previous versions
(Fig. 4d), and more similar to CUBIC (Fig. 4a) in that there
exist scenarios where end-to-end throughput suffers. These
reflect existing findings of lower utilization in BBRv2 and
BBRv3 [11, 47, 54]. Based on the heuristic, it is clear that in
some lossy networks such as the ones empirically evaluated

https://github.com/StanfordSNR/connection-splitting


in Fig. 1, connection-splitting can significantly increase the
throughput of BBRv3 connections. It is possible that the BBR
algorithm continues to evolve in this direction given that
BBR’s unfairness remains contentious today [11, 54].

Summary. While BBR may not have benefited from split-
ting with the release of “v1” in 2016, BBRv2 and now BBRv3
have evolved to behave more conventionally—similar to tra-
ditional, loss-based CCAs such as CUBIC—in the sense that
they do. Even so-called “model-based” congestion control
algorithms seem to now react to loss as a congestion signal,
as the BBR algorithm continues to evolve.

5.2 Finding: There exist classes of network
paths where TCP BBRv3 would signifi-
cantly benefit from splitting but TCP CU-
BIC would not.

Are there new classes of network settings where BBR benefits
significantly from splitting but CUBIC does not? We want to
understand the network settings in which a congestion control
scheme is not able to achieve practical bottleneck link rate
utilizations end-to-end, but is with a connection-splitter.

We find that while splitting benefits BBRv3 in all the same
scenarios as CUBIC, it also has the potential to benefit BBRv3
in many new scenarios. In addition to edge deployments with
a lossy last-mile, BBRv3 also benefits from splitting in sce-
narios where there is loss on both path segments, and when
the connection-splitter is located farther from the edge. We
partition these scenarios into three classes of network settings:

I. Paths with asymmetric delay and a lossy last-mile,
II. Lossy paths with asymmetric delay,

III. Lossy paths with more symmetric delay.

Figs. 1a to 1c represent network settings in each class, re-
spectively. “Asymmetric” refers to the delays on the two path
segments. These emulations empirically demonstrate that CU-
BIC only benefits in the first class, while BBRv3 benefits in
all three. BBRv1 does not need splitting in any context.

Analysis. To identify which network paths benefit from
connection-splitting and where along the paths PEPs should
be deployed, we apply the heuristic (Fig. 2). For each CCA,
we conduct an exhaustive search of the 15 · 21 · 25 = 7875
combinations of settings within our parameter space (Table 1),
and efficiently predict the split and end-to-end throughputs.

We filter on the predicted throughputs for network settings
where splitting improves end-to-end throughput by at least
3×, and where the split connection utilizes at least half the
bottleneck link rate (Table 3). BBRv1 does not meet these cri-
teria is any scenarios, and the theoretical connection-splitter
is unable to improve the throughput of BBRv1 by even 50%.
CUBIC and BBRv3 meet these criteria in 942 and 188 sce-
narios, respectively. CUBIC benefits from splitting in more
scenarios because its end-to-end utilization is more frequently
low, so it more frequently has a large split improvement.

Filter BBRv1 CUBIC BBRv3

Initial 7875 7875 7875
Split imprvmnt. > 3× 0 2231 234
Split utilization > 0.5 0 942 188

Asymmetric, last-mile 0 942 38
Asymmetric, lossy 0 0 72

Symmetric, lossy 0 0 78

Table 3: An exhaustive search of network paths and their PEP
locations that benefit from splitting for each CCA, and the number
of filtered settings that belong to each class.

Since the distribution of network paths in our parameter
space does not reflect any meaningful real world distribution,
we are more interested in the classes of network settings that
benefit from splitting. We realized that all of the relevant
network settings for CUBIC can be clustered into Class I,
as network paths where one path segment has 1 ms delay
and non-zero loss, and the other has > 1 ms delay and 0%
loss. However, Class I only accounts for 21% of the relevant
network settings for BBRv3. We identify Class II, which is
the same as I, except both path segments have non-zero loss.
Class III is the same as II, except both path segments have > 1
ms delay. We used the results to select three representative
network settings to empirically evaluate in Fig. 1.

Intuitively, we can understand why BBRv3 benefits more
from splitting in lossy scenarios than CUBIC based on how it
reacts to loss and delay (Fig. 4d). BBRv3’s sensitivity to loss
and delay is more gradual than abrupt, so it is more likely to
benefit when splitting a lossy, high-delay network path in any
way. In comparison, CUBIC’s throughput falls off a cliff for
many of these segmentations.

Discussion. Do these results reflect where PEP deployments
have been useful in the real world? Connection-splitters have
traditionally been found in satellite, cellular, and Wi-Fi net-
works with a wireless link or rate policer [13, 21]. This re-
sembles Class I, where the network path consists of a lossy
last-mile, and a reliable Internet path segment. It makes sense
then for PEPs to be traditionally located at the edge to address
the issues of loss-based schemes [14,17,39]. We expect these
PEPs to similarly benefit BBRv3 in the same locations.

In Classes I and II, asymmetric delay can be severe in
low-resource networks in addition to wireless last-mile links;
Consider, for example, regions with no IXPs in which a sig-
nificant proportion of Internet traffic travels internationally.

For Classes II and III, satellite (and also wireless ad-hoc)
networks are known for having lossy “middle-miles” [2, 30,
39,41]. This can be due to bad weather, fast-moving satellites,
and long-distance radio waves, etc. Since CUBIC does not
trivially benefit from splitting in these scenarios, the tradi-
tional solution has been to split the connection at multiple
points and to use an FEC-based or other proprietary protocol
in the satellite backhaul [2, 17, 39]. Our results suggest such



an invasive solution may not be necessary for BBRv3.
How could this inform the deployment of connection-

splitting PEPs? With the caveat that futher exploration is
required to understand how the heuristic extrapolates to the
real world, one idea is to determine where to deploy PEPs
along an existing network path for maximum benefit espe-
cially as congestion-control schemes evolve. Another idea
is given the location of a PEP, determine which connections
going through the PEP would most benefit based on knowl-
edge of each connection’s network path. We leave network
operators to decide how best to model their networks and
apply the heuristic to evaluate potential PEP deployments.

Summary. While TCP CUBIC only benefits from
connection-splitting when the PEP is located at the lossy
last-mile, TCP BBRv3 can also benefit when there is loss on
both sides of the PEP and when there are longer propagation
delays. This suggests that TCP connections using BBRv3
should benefit from splitters at the same locations as for CU-
BIC, and also that traditional methods used to address loss in
the middle-mile could use simple connection-splitting instead.
We believe this method of analyzing useful network paths and
PEP placements for connection-splitting can be extended to
model new types of networks, especially in space.

5.3 Finding: QUIC implementations of the
same congestion control schemes vary sig-
nificantly, and further differ from Linux’s
TCP implementations.

How does CCA implementation impact end-to-end behav-
ior, and therefore split behavior? Might claims about “split
throughput” depend not just on the CCA, but also the imple-
mentation and/or the transport protocol on top of it?

For our initial study, we compared end-to-end through-
put for four open-source implementations each of CUBIC,
BBRv1, and BBRv2/3; one using TCP and three using QUIC.
We find that the end-to-end behavior of each CCA varies by
implementation in both baseline throughput and sensitivity to
loss and delay. To evaluate the split behavior of QUIC, instead
of creating a custom and explicit connection-splitting PEP
for each QUIC implementation, we apply the split throughput
heuristic and argue that these implementations will likewise
respond differently to connection-splitting PEPs.

Fig. 5 visualizes the end-to-end behavior of these schemes.
We highlight that the Cloudflare and picoquic CUBIC imple-
mentations are less sensitive to loss than Google or TCP; the
former may benefit from splitting in more classes of network
settings than the latter. Additionally, their BBR implementa-
tions exhibit non-uniform behavior, suggesting a non-uniform
response to connection-splitting. These variations indicate
that the benefits of in-network assistance should be considered
along with not just the CCA but its specific implementations.

Analysis. The Google QUIC (Figs. 5b, 5f and 5j) and TCP
(Figs. 5a, 5e and 5i) implementations are most similar to

each other for each CCA. This is reasonable if we take the
community-based CUBIC implementation in Linux to be the
standard, and considering that Google contributed to the Linux
BBR implementations. In general, Google QUIC achieves
slightly higher utilization than Linux TCP.

The Cloudflare QUIC BBR implementations (Figs. 5c
and 5g) exhibit profoundly different behavior from Linux TCP
in baseline performance. Note that Cloudflare uses BBRv1 for
TCP but their use of BBR in QUIC is experimental. Anecdo-
tally, a Cloudflare employee has expressed difficulty making
their BBR implementation performant, having to reverse engi-
neer the Linux kernel [15]. Given the wide adoption of BBRv1
for TCP at many CDNs [51], we expect it to be desirable yet
challenging for these same companies to correctly incorporate
BBRv3 into their QUIC stacks in the coming years.

The picoquic BBR implementations (Figs. 5d and 5h) are
more similar to Linux TCP, although its BBRv3 implemen-
tation seems to have a contradicting reaction to delay. We
note that picoquic is intended for experimental use in the
IETF [22]. It is important then to understand its congestion
control behavior if it is to be used to evaluate IETF proposals.
We believe its differences from Linux TCP warrant further
exploration, but perhaps also that the ongoing standardiza-
tion efforts of BBR in the IETF [9] indicate that there is no
monolith yet of “the BBR algorithm.”

The Cloudflare QUIC and picoquic implementations of
CUBIC (Figs. 5k and 5l) interestingly both exhibit a more
gradual degradation in response to loss and delay than Linux
TCP (Fig. 5i). We find this harder to explain, given that TCP
CUBIC has been around since 2006, and perhaps can be
attributed to transport protocol mechanisms in QUIC. Nev-
ertheless, this indicates that it is important to understand the
behavior of a CCA in the context of its entire implementation.

Fig. 6 applies the heuristic to show how split behavior
can vary for CCA implementations with different end-to-end
behaviors. Some QUIC CUBIC implementations benefit in
new network settings where TCP CUBIC does not, while the
various QUIC BBRv3 implementations exhibit non-uniform
end-to-end behavior and thus no clear trend in split behavior.

Discussion. Why do we believe we can extrapolate split
behavior from the end-to-end behavior of QUIC? Previous
studies explore the effects of QUIC’s transport protocol mech-
anisms in such a case [26, 48]. They find that the effects of
zero-RTT connection establishment with regards to long-lived
throughput to be minimal, and stream multiplexing to be mu-
tually beneficial in both scenarios. Further studies can clarify
the interactions between CCAs and transport mechanisms.

How do we know that the difference in behavior is due to
the congestion control implementation and not other transport
protocol mechanisms? Well, we don’t, and there is known to
be significant variance in the features supported by different
QUIC implementations [33]. However, we find it intuitive that
congestion control would be a major factor in the measured
sustained goodput of a bulk file transfer.



0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.94 0.90 0.88 0.85

0.91 0.83 0.70 0.61 0.49

0.89 0.81 0.74 0.65 0.53

0.88 0.77 0.73 0.64 0.54

0.85 0.79 0.72 0.64 0.55

0.82 0.77 0.69 0.58 0.49

TCP BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
(a) TCP, BBRv3

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.94 0.94 0.94 0.94

0.94 0.92 0.85 0.78 0.73

0.93 0.89 0.82 0.71 0.60

0.91 0.89 0.83 0.73 0.64

0.89 0.88 0.84 0.78 0.69

0.88 0.87 0.83 0.77 0.70

Chromium QUIC BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(b) Google quiche, BBRv3

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.91 0.88 0.88 0.84 0.83

0.72 0.71 0.71 0.70 0.69

0.75 0.72 0.69 0.66 0.64

0.62 0.64 0.63 0.60 0.59

0.57 0.58 0.56 0.55 0.52

0.53 0.54 0.50 0.46 0.45

Cloudflare QUIC BBRv2, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(c) Cloudflare quiche, BBRv2

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.80 0.77 0.80 0.79

0.93 0.70 0.59 0.54 0.48

0.92 0.81 0.76 0.72 0.70

0.91 0.85 0.82 0.79 0.77

0.89 0.87 0.86 0.82 0.80

0.87 0.87 0.86 0.81 0.80

Picoquic QUIC BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(d) picoquic, BBRv3

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.94 0.90 0.88 0.85

0.91 0.83 0.70 0.61 0.49

0.89 0.81 0.74 0.65 0.53

0.88 0.77 0.73 0.64 0.54

0.85 0.79 0.72 0.64 0.55

0.82 0.77 0.69 0.58 0.49

TCP BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.95 0.94 0.92 0.91

0.92 0.93 0.92 0.90 0.91

0.91 0.90 0.89 0.85 0.86

0.88 0.86 0.85 0.80 0.79

0.86 0.85 0.83 0.79 0.77

0.84 0.81 0.79 0.75 0.76

TCP BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(e) TCP, BBRv1

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.92 0.89 0.87 0.85 0.84

0.91 0.88 0.87 0.87 0.88

0.89 0.88 0.88 0.88 0.88

0.87 0.87 0.88 0.86 0.86

0.86 0.86 0.86 0.84 0.84

Chromium QUIC BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
(f) Google quiche, BBRv1

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.87 0.86 0.84 0.81

0.73 0.74 0.70 0.68 0.68

0.76 0.73 0.70 0.66 0.64

0.61 0.66 0.64 0.62 0.58

0.60 0.59 0.53 0.52 0.49

0.55 0.51 0.50 0.47 0.45

Cloudflare QUIC BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(g) Cloudflare quiche, BBRv1

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.93 0.93 0.92 0.91 0.91

0.92 0.91 0.90 0.89 0.88

0.91 0.90 0.88 0.87 0.86

0.89 0.87 0.85 0.82 0.81

0.88 0.85 0.82 0.84 0.81

Picoquic QUIC BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(h) picoquic, BBRv1

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.95 0.94 0.92 0.91

0.92 0.93 0.92 0.90 0.91

0.91 0.90 0.89 0.85 0.86

0.88 0.86 0.85 0.80 0.79

0.86 0.85 0.83 0.79 0.77

0.84 0.81 0.79 0.75 0.76

TCP BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.92 0.86 0.77

0.93 0.45 0.28 0.22 0.18

0.91 0.25 0.15 0.12 0.09

0.89 0.18 0.11 0.08 0.07

0.87 0.14 0.08 0.06 0.05

0.85 0.11 0.07 0.05 0.04

TCP CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(i) TCP, CUBIC

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.94 0.53 0.37 0.30 0.26

0.93 0.29 0.20 0.15 0.13

0.92 0.21 0.13 0.11 0.09

0.91 0.17 0.11 0.08 0.07

0.90 0.14 0.09 0.07 0.06

Chromium QUIC CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(j) Google quiche, CUBIC

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.91 0.85 0.85 0.79 0.75

0.89 0.78 0.57 0.46 0.35

0.86 0.79 0.52 0.28 0.21

0.82 0.73 0.52 0.25 0.15

0.79 0.65 0.49 0.27 0.12

0.75 0.59 0.43 0.28 0.11

Cloudflare QUIC CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(k) Cloudflare quiche, CUBIC

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.94 0.94 0.94 0.94 0.94

0.93 0.88 0.74 0.60 0.48

0.93 0.75 0.50 0.41 0.31

0.91 0.69 0.38 0.31 0.24

0.90 0.65 0.36 0.27 0.21

0.84 0.55 0.28 0.24 0.15

Picoquic QUIC CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(l) picoquic, CUBIC

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.92 0.86 0.77

0.93 0.45 0.28 0.22 0.18

0.91 0.25 0.15 0.12 0.09

0.89 0.18 0.11 0.08 0.07

0.87 0.14 0.08 0.06 0.05

0.85 0.11 0.07 0.05 0.04

TCP CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

Figure 5: Heatmaps for three QUIC implementations of BBRv3 (or BBRv2), BBRv1, and CUBIC showing link rate utilization calculated as the
ratio of achieved goodput to link rate, compared to Linux TCP. The heatmaps are shown at various loss rates and one-way delays with a fixed
link rate of 10 Mbit/s. User-space QUIC is not CPU-limited, achieving high utilizations at 1 ms delay and 0% loss. The QUIC implementations
are Google quiche, Cloudflare quiche, and a minimalist implementation based on the IETF spec called picoquic. Median of n = 20 trials.

The divergence in QUIC implementations is not so dis-
similar from that of TCP at a similar state of evolution [1],
but there are still some fundamental differences. With QUIC
implementations in userspace, there is a larger diversity of
implementations that are easier to tune for a specific appli-
cation metric, as opposed to correctness or fairness from a
congestion-control point of view. These algorithms are also
highly parameterized, with no standard nor test suite, so it’s
not surprising that the implementations differ.

If there is reason to believe that QUIC is losing out on
throughput by not connection-splitting, then there will con-
tinue to be research on how to achieve the same benefits
without ossification [28, 29, 52, 53]. The heuristic helps us un-
derstand the theoretical achievable throughput with a simple
connection-splitter, or even by combining multiple end-to-end
congestion control schemes. In addition to research, this could
motivate privacy-minded proposals in the Internet standards

community to also view themselves as potential deployment
opportunities for private PEPs [27, 43–45].

Another application of analyzing CCA implementations is
to analyze the Linux TCP implementations of BBR within a
major version over time. We did this analysis with BBRv1
on 13 Linux kernels between 2016 and 2024, but found no
significant variance. However, given the dynamic nature of
BBR and the Linux networking stack, it is possible there will
still be changes to the split behavior of TCP in the future.

Summary. We believe it is important to understand the end-
to-end behavior of a congestion control scheme in the context
of its entire implementation. Our results suggest that BBR is
challenging to implement, and that even CUBIC implemen-
tations can vary based on context. Whether the prevailing
wisdom is that a specific CCA or transport protocol has made
in-network assistance undesirable, these results suggest that
it is valuable to consistently re-evaluate these claims.



Linux
TCP

Google
quiche

Cloudflare
quiche

IETF
picoquic

CUBIC Implementations

0.00
0.25
0.50
0.75
1.00

Ut
iliz

at
io

n 
(P

re
di

ct
ed

) 1ms 2% 10Mbit/s, 80ms 2% 40Mbit/s
Split End-to-End

(a) Some QUIC CUBIC implementations can benefit in new network classes
where TCP CUBIC could not.

Linux
TCP

Google
quiche

Cloudflare
quiche

IETF
picoquic

BBRv3 Implementations

0.00
0.25
0.50
0.75
1.00

Ut
iliz

at
io

n 
(P

re
di

ct
ed

) 20ms 0% 40Mbit/s, 1ms 4% 50Mbit/s
Split End-to-End

(b) The various BBRv3 implementations have non-uniform end-to-end be-
havior and no clear resulting split behavior.

Figure 6: Predicted bottleneck link rate utilizations calculated from
the predicted end-to-end and split throughputs of the TCP and QUIC
implementations, on two different network path segments. End-to-
end behavior of each CCA varies significantly by implementation.

6 Accuracy Analysis
Our analysis of connection-splitting for TCP and its exten-
sions to QUIC rely on the accuracy of the split throughput
heuristic. In this section, we are primarily concerned with
how accurate our predictions, which are based on measure-
ments from a one-segment topology, are for measurements
from a two-segment topology in emulation, without and with
a connection-splitting TCP PEP:

• Does the compose function accurately represent the com-
bined network path in the end-to-end throughput?

• Does the split throughput heuristic accurately predict
split throughput?

Most importantly, we find the heuristic to be able
to usefully predict trends. In terms of absolute pre-
dictions, we find the pred_e2e_throughput() and
pred_split_throughput() functions to be correct within
a reasonable tolerance, with a slight tendency to overestimate.

Orthogonally, we do not evaluate the accuracy to which
emulation studies reflect the real world with multi-flow set-
tings and more complex network properties, nor how the ac-
curacy would extrapolate to QUIC connections with custom
connection splitters. It may be interesting to explore how to
incorporate such factors into the network model and heuristic.

Methodology. Recall that for a given network path com-
posed of two path segments, we can obtain both the pre-
dicted end-to-end and split throughputs, and the ground truth
throughputs in an emulated network with and without a TCP
PEP. Then for a network setting, we can compute the accuracy
as the percent error in predicted vs. measured throughput.

We perform an empirical accuracy analysis of BBRv3 for
two end-to-end network paths with identical bandwidth and
delay, both without (0%) and with (4%) loss. We test various
splits for the bandwidth, delay, and loss and analyze the ac-
curacy trends. In particular, we select delay splits such that
the end-to-end delay is 80 ms, bandwidth splits such that the
bottleneck bandwidth is 10 Mbit/s, and loss splits such that
the total loss is either 0% or 4%. We parameterize the network
path segments to use the cached measurements from Table 1.

6.1 End-to-End Throughput Accuracy
Each of our splits composes to the same end-to-end network
path, so we predict the same end-to-end throughput for each.
Our experimental results in Fig. 7a show that the measured
end-to-end throughputs are also roughly uniform, especially
without loss, indicating that our method of composing network
path segments in emulation represents the same end-to-end
network path.

6.2 Split Throughput Accuracy
The split throughput predictions accurately reflect trends
in loss, delay, and bandwidth (Fig. 7b). For example, split
throughput is generally higher when the high-bandwidth link
is paired with high delay (the yellow-est cells). It is also lower
when the lossy link is paired with high delay (columns 1 and
2) or low bandwidth (columns 3-5).

The split throughput predictions tend to slightly overesti-
mate, but we think the level of error is small enough to be
helpful for informing real PEP deployment. The maximum er-
ror is ±14%, and on average ±4%. This dwarfs the measured
gains in some situations, and rules out a large gain in others.

One factor that may lead to overestimation of split through-
put is the queue behavior and the burstiness of the sender.
With small queues and bursty sending, we would expect the
far path segment from the data sender to sometimes be limited
by the send buffer. This could subsequently affect how the far
connection probes for and utilizes available link rate capacity.

Another factor is the proximity of the bottleneck link to the
sender. While our heuristic does not account for this, the real
split throughputs for symmetric pairs of network paths (e.g.,
the left three and right three columns in Fig. 7b), show that
we slightly overestimate when the low-bandwidth bottleneck
link is far from the sender. Based on our reasoning about
queues, this would suggest that the far path segment, already
the bottleneck, is even further under-saturated.

Overall, we find our end-to-end and split throughput predic-
tions to usefully reflect relative trends and absolute through-
put within a reasonable tolerance. They are not intended to



(1,
 80

)

(20
, 6

0)

(40
, 4

0)

(60
, 2

0)
(80

, 1
)

Delay Split (ms)

(10, 50)

(10, 30)

(10, 10)

(30, 10)

(50, 10)

Ba
nd

wi
dt

h 
Sp

lit
 (M

bi
t/s

)

0.86 0.86 0.86 0.86 0.85

0.85 0.86 0.86 0.86 0.85

0.86 0.85 0.86 0.86 0.85

0.85 0.85 0.86 0.86 0.86

0.86 0.85 0.86 0.86 0.86

TCP BBRv3 End-to-End Throughput,
Without Loss (Measured)

(1,
 80

)

(20
, 6

0)

(40
, 4

0)

(60
, 2

0)
(80

, 1
)

Delay Split (ms)

(10, 50)

(10, 30)

(10, 10)

(30, 10)

(50, 10)

Ba
nd

wi
dt

h 
Sp

lit
 (M

bi
t/s

)

0.86 0.86 0.86 0.86 0.86

0.86 0.86 0.86 0.86 0.86

0.86 0.86 0.86 0.86 0.86

0.86 0.86 0.86 0.86 0.86

0.86 0.86 0.86 0.86 0.86

TCP BBRv3 End-to-End Throughput,
Without Loss (Predicted)

(1,
 80

)

(20
, 6

0)

(40
, 4

0)

(60
, 2

0)
(80

, 1
)

Delay Split (ms)

(10, 50)

(10, 30)

(10, 10)

(30, 10)

(50, 10)

Ba
nd

wi
dt

h 
Sp

lit
 (M

bi
t/s

)

-0.00 -0.00 -0.00 -0.00 0.00

0.00 -0.00 -0.00 -0.00 0.00

-0.00 0.00 -0.00 -0.00 0.00

0.01 0.00 -0.00 -0.00 -0.00

-0.00 0.00 -0.00 -0.00 -0.00

TCP BBRv3 End-to-End Throughput,
Without Loss (Accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(10
, 5

0),
 (1

, 8
0)

(10
, 1

0),
 (1

, 8
0)

(50
, 1

0),
 (1

, 8
0)

(10
, 5

0),
 (4

0, 
40

)

(10
, 1

0),
 (4

0, 
40

)

(50
, 1

0),
 (4

0, 
40

)

(10
, 5

0),
 (8

0, 
1)

(10
, 1

0),
 (8

0, 
1)

(50
, 1

0),
 (8

0, 
1)

Bandwidth (Mbit/s) and Delay (ms) Split

(4, 0)

(3, 1)

(2, 2)

(1, 3)

(0, 4)

Lo
ss

 S
pl

it 
(%

)

0.61 0.55 0.55 0.59 0.58 0.55 0.60 0.58 0.57

0.56 0.56 0.59 0.60 0.58 0.56 0.56 0.57 0.57

0.60 0.58 0.59 0.60 0.55 0.57 0.58 0.60 0.57

0.57 0.57 0.58 0.59 0.58 0.56 0.57 0.61 0.58

0.59 0.60 0.55 0.62 0.56 0.57 0.60 0.61 0.59

TCP BBRv3 End-to-End Throughput,
With Loss (Measured)

(10
, 5

0),
 (1

, 8
0)

(10
, 1

0),
 (1

, 8
0)

(50
, 1

0),
 (1

, 8
0)

(10
, 5

0),
 (4

0, 
40

)

(10
, 1

0),
 (4

0, 
40

)

(50
, 1

0),
 (4

0, 
40

)

(10
, 5

0),
 (8

0, 
1)

(10
, 1

0),
 (8

0, 
1)

(50
, 1

0),
 (8

0, 
1)

Bandwidth (Mbit/s) and Delay (ms) Split

(4, 0)

(3, 1)

(2, 2)

(1, 3)

(0, 4)

Lo
ss

 S
pl

it 
(%

)

0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58 0.58

TCP BBRv3 End-to-End Throughput,
With Loss (Predicted)

(10
, 5

0),
 (1

, 8
0)

(10
, 1

0),
 (1

, 8
0)

(50
, 1

0),
 (1

, 8
0)

(10
, 5

0),
 (4

0, 
40

)

(10
, 1

0),
 (4

0, 
40

)

(50
, 1

0),
 (4

0, 
40

)

(10
, 5

0),
 (8

0, 
1)

(10
, 1

0),
 (8

0, 
1)

(50
, 1

0),
 (8

0, 
1)

Bandwidth (Mbit/s) and Delay (ms) Split

(4, 0)

(3, 1)

(2, 2)

(1, 3)

(0, 4)

Lo
ss

 S
pl

it 
(%

)

-0.05 0.04 0.04 -0.02-0.01 0.05 -0.04-0.01 0.00

0.02 0.03 -0.02-0.04-0.01 0.03 0.02 0.00 0.01

-0.05-0.01-0.03-0.04 0.04 0.01 -0.01-0.04 0.01

0.00 0.01 -0.01-0.03-0.00 0.02 0.02 -0.05-0.01

-0.02-0.04 0.05 -0.07 0.02 0.02 -0.03-0.05-0.02

TCP BBRv3 End-to-End Throughput,
With Loss (Accuracy)

0.0

0.2

0.4

0.6

0.8

1.0
Lin

k 
Ra

te
 U

til
iza

tio
n

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(a) End-to-end throughput accuracy.

(1,
 80

)

(20
, 6

0)

(40
, 4

0)

(60
, 2

0)
(80

, 1
)

Delay Split (ms)

(10, 50)

(10, 30)

(10, 10)

(30, 10)

(50, 10)

Ba
nd

wi
dt

h 
Sp

lit
 (M

bi
t/s

)

0.86 0.86 0.87 0.87 0.86

0.86 0.86 0.87 0.87 0.85

0.83 0.84 0.86 0.87 0.85

0.84 0.86 0.88 0.89 0.91

0.85 0.86 0.88 0.90 0.91

TCP BBRv3 Split Throughput,
Without Loss (Measured)

(1,
 80

)

(20
, 6

0)

(40
, 4

0)

(60
, 2

0)
(80

, 1
)

Delay Split (ms)

(10, 50)

(10, 30)

(10, 10)

(30, 10)

(50, 10)

Ba
nd

wi
dt

h 
Sp

lit
 (M

bi
t/s

)

0.95 0.92 0.90 0.88 0.86

0.95 0.92 0.90 0.88 0.86

0.86 0.88 0.90 0.88 0.86

0.86 0.88 0.90 0.92 0.95

0.86 0.88 0.90 0.92 0.95

TCP BBRv3 Split Throughput,
Without Loss (Predicted)

(1,
 80

)

(20
, 6

0)

(40
, 4

0)

(60
, 2

0)
(80

, 1
)

Delay Split (ms)

(10, 50)

(10, 30)

(10, 10)

(30, 10)

(50, 10)

Ba
nd

wi
dt

h 
Sp

lit
 (M

bi
t/s

)

0.10 0.07 0.04 0.01 -0.00

0.10 0.07 0.04 0.01 0.00

0.03 0.05 0.05 0.01 0.00

0.01 0.02 0.03 0.04 0.04

0.01 0.02 0.03 0.03 0.04

TCP BBRv3 Split Throughput,
Without Loss (Accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(10
, 5

0),
 (1

, 8
0)

(10
, 1

0),
 (1

, 8
0)

(50
, 1

0),
 (1

, 8
0)

(10
, 5

0),
 (4

0, 
40

)

(10
, 1

0),
 (4

0, 
40

)

(50
, 1

0),
 (4

0, 
40

)

(10
, 5

0),
 (8

0, 
1)

(10
, 1

0),
 (8

0, 
1)

(50
, 1

0),
 (8

0, 
1)

Bandwidth (Mbit/s) and Delay (ms) Split

(4, 0)

(3, 1)

(2, 2)

(1, 3)

(0, 4)

Lo
ss

 S
pl

it 
(%

)

0.84 0.82 0.84 0.55 0.56 0.86 0.58 0.58 0.86

0.85 0.78 0.80 0.62 0.67 0.79 0.66 0.66 0.88

0.84 0.71 0.72 0.70 0.68 0.70 0.71 0.72 0.90

0.84 0.65 0.66 0.78 0.64 0.60 0.80 0.79 0.90

0.83 0.56 0.60 0.86 0.55 0.53 0.86 0.85 0.89

TCP BBRv3 Split Throughput,
With Loss (Measured)

(10
, 5

0),
 (1

, 8
0)

(10
, 1

0),
 (1

, 8
0)

(50
, 1

0),
 (1

, 8
0)

(10
, 5

0),
 (4

0, 
40

)

(10
, 1

0),
 (4

0, 
40

)

(50
, 1

0),
 (4

0, 
40

)

(10
, 5

0),
 (8

0, 
1)

(10
, 1

0),
 (8

0, 
1)

(50
, 1

0),
 (8

0, 
1)

Bandwidth (Mbit/s) and Delay (ms) Split

(4, 0)

(3, 1)

(2, 2)

(1, 3)

(0, 4)

Lo
ss

 S
pl

it 
(%

)

0.87 0.86 0.86 0.52 0.52 0.90 0.58 0.58 0.95

0.90 0.80 0.80 0.65 0.65 0.81 0.66 0.66 0.95

0.92 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.92

0.95 0.66 0.66 0.81 0.65 0.65 0.80 0.80 0.90

0.95 0.58 0.58 0.90 0.52 0.52 0.86 0.86 0.87

TCP BBRv3 Split Throughput,
With Loss (Predicted)

(10
, 5

0),
 (1

, 8
0)

(10
, 1

0),
 (1

, 8
0)

(50
, 1

0),
 (1

, 8
0)

(10
, 5

0),
 (4

0, 
40

)

(10
, 1

0),
 (4

0, 
40

)

(50
, 1

0),
 (4

0, 
40

)

(10
, 5

0),
 (8

0, 
1)

(10
, 1

0),
 (8

0, 
1)

(50
, 1

0),
 (8

0, 
1)

Bandwidth (Mbit/s) and Delay (ms) Split

(4, 0)

(3, 1)

(2, 2)

(1, 3)

(0, 4)

Lo
ss

 S
pl

it 
(%

)

0.03 0.04 0.01 -0.05-0.07 0.05 -0.00-0.00 0.11

0.06 0.04 0.00 0.06 -0.02 0.03 -0.00 0.01 0.07

0.09 0.02 0.01 0.03 0.06 0.04 0.02 0.01 0.03

0.13 0.01 0.00 0.04 0.02 0.08 -0.00 0.01 -0.00

0.14 0.02 -0.03 0.05 -0.05-0.02-0.00 0.01 -0.02

TCP BBRv3 Split Throughput,
With Loss (Accuracy)

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

(b) Split throughput accuracy.

Figure 7: Heatmaps of the measured and predicted BBRv3 throughputs for various splits of delay, bandwidth, and loss, both without (top) and
with (bottom) loss. The end-to-end throughput predictions (not pictured) are the same for all cells at 0.86 utilization without loss and 0.58
utilization with loss, because they represent the same network path, so end-to-end prediction errors are roughly uniform. The split throughput
predictions err slightly on the side of overestimation, but they accurately reflect trends in higher or lower throughputs for measurements on
different splits of the same network path. Median of n = 40 trials.

make claims about exact achievable throughputs nor about
the immediate utility of PEPs in the real world, but simply to
reason about how connection-splitting may impact long-lived
throughput in a simplified network model.

7 Conclusion
We performed an emulation measurement study on the impact
of connection-splitting PEPs on sustained throughput in the
context of recent developments such as BBR and QUIC. We
found that TCP BBR benefits more from splitting today than
when it was first released, and its current version benefits
in settings where TCP CUBIC does not. QUIC congestion-
control implementations exhibit substantial variability both
within QUIC and with Linux TCP.

In the short term, we urge researchers to refer to congestion-
control schemes by algorithm/implementation/version, not
just “BBR” or even “QUIC BBRv1”. We urge the community
to create regression and acceptance tests—possibly including
our heatmaps with “permissible zones”—for a scheme to call
itself an implementation of the XYZv1 algorithm.

For connection-splitting to truly be relevant again, there
must be clear scenarios where PEPs offer significant bene-
fits but end-to-end solutions fall short. This paper is a first

step, but real-world studies are needed. Next, even though
the problem is old, the solution need not be to “just do the
same things.” We hope this paper motivates the community to
pursue protocol-agnostic approaches to in-network assistance
and destigmatize the controversial nature of PEPs.

Acknowledgments

We thank Michael Welzl, our shepherd Jon Crowcroft, and the
anonymous USENIX ATC ’25 reviewers for their invaluable
feedback, Frode Kileng for a comment that partly inspired this
work [25], and members of IRTF PANRG and Stanford SNR
for other helpful discussions. This work was supported in
part by NSF grants 2045714 and 2039070, DARPA contract
HR001120C0107, a Stanford School of Engineering Fellow-
ship, a Sloan Research Fellowship, affiliate members and
other supporters of Stanford DAWN, including Meta, Google,
and VMware, as well as Cisco and SAP, and Huawei, Drop-
box, Amazon, and the Mozilla Foundation. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the sponsors.



References
[1] Mark Allman and Aaron Falk. On the effective evalua-

tion of TCP. ACM SIGCOMM Computer Communica-
tion Review, 29(5):59–70, 1999.

[2] John Border, Bhavit Shah, Chi-Jiun Su, and Rob Torres.
Evaluating QUIC’s Performance Against Performance
Enhancing Proxy over Satellite Link. In 2020 IFIP
Networking Conference (IFIP Networking), pages 755–
760, 2020.

[3] Carlo Caini, Rosario Firrincieli, and Daniele Lacamera.
PEPsal: a Performance Enhancing Proxy designed for
TCP satellite connections. In 2006 IEEE 63rd Vehicular
Technology Conference, volume 6, pages 2607–2611,
2006.

[4] Yi Cao, Arpit Jain, Kriti Sharma, Aruna Balasubrama-
nian, and Anshul Gandhi. When to Use and When Not to
Use BBR: An Empirical Analysis and Evaluation Study.
In Proceedings of the Internet Measurement Conference
(IMC), pages 130–136, 2019.

[5] Neal Cardwell. BBR Congestion Control Work at
Google, March 2018. Presentation, IETF 101 London,
Internet Congestion Control Research Group (ICCRG).
https://datatracker.ietf.org/meeting/101/materials/
slides-101-iccrg-an-update-on-bbr-work-at-google-00.

[6] Neal Cardwell. BBRv3: Algorithm Overview
and Google’s Public Internet Deployment.
Presentation, IETF 119 Brisbane, Conges-
tion Control Working Group (CCWG).
https://datatracker.ietf.org/meeting/119/materials/
slides-119-ccwg-bbrv3-overview-and-google-deployment-00,
March 2024.

[7] Neal Cardwell and Yuchung Cheng. BBR Con-
gestion Control. Presentation, IETF 97 Seoul,
Internet Congestion Control Research Group (IC-
CRG). https://www.ietf.org/proceedings/97/slides/
slides-97-iccrg-bbr-congestion-control-01.pdf, Novem-
ber 2016.

[8] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn,
Soheil Hassas Yeganeh, and Van Jacobson. BBR:
Congestion-Based Congestion Control. Communica-
tions of the ACM, 60(2):58–66, 2017.

[9] Neal Cardwell, Ian Swett, and Joseph Beshay. BBR
Congestion Control. IETF Draft. https://datatracker.ietf.
org/doc/draft-cardwell-ccwg-bbr/, September 2024.

[10] Cloudflare, Inc. quiche. GitHub repository. https://
github.com/cloudflare/quiche, January 2025.

[11] Soumyadeep Datta and Fraida Fund. Replication:
"When to Use and When Not to Use BBR". In Pro-
ceedings of the 2023 ACM on Internet Measurement
Conference (IMC), pages 30–35, 2023.

[12] Dmitry Duplyakin, Robert Ricci, Aleksander Mar-
icq, Gary Wong, Jonathon Duerig, Eric Eide, Leigh
Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya
Akella, Kuangching Wang, Glenn Ricart, Larry Landwe-
ber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The design
and operation of CloudLab. In 2019 USENIX Annual
Technical Conference (USENIX ATC 19), pages 1–14,
Renton, WA, July 2019. USENIX Association.

[13] Korian Edeline and Benoit Donnet. A Bottom-Up In-
vestigation of the Transport-Layer Ossification. In 2019
Network Traffic Measurement and Analysis Conference
(TMA), pages 169–176, 2019.

[14] Viktor Farkas, Balázs Héder, and Szabolcs Nováczki.
A Split Connection TCP Proxy in LTE Networks. In
Róbert Szabó and Attila Vidács, editors, Information and
Communication Technologies, pages 263–274, Berlin,
Heidelberg, 2012. Springer.

[15] IETF Internet Engineering Task Force. IETF
119: Congestion Control Working Group 2024-
03-21 03:00. https://www.youtube.com/watch?v=
ZVqQiA7h-W8, March 2024. Q&A: 1:37:30.

[16] Google. QUICHE. GitHub repository. https://github.
com/google/quiche/, January 2025.

[17] Jim Griner, John Border, Markku Kojo, Zach D. Shelby,
and Gabriel Montenegro. Performance Enhancing Prox-
ies Intended to Mitigate Link-Related Degradations.
RFC 3135, June 2001.

[18] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A
New TCP-Friendly High-Speed TCP Variant. SIGOPS
Operating Systems Review, 42(5):64–74, July 2008.

[19] Mark J. Handley, Jitendra Padhye, Sally Floyd, and Joerg
Widmer. TCP Friendly Rate Control (TRFC): Protocol
Specification. RFC 5348, September 2008.

[20] David A. Hayes, David Ros, and Özgü Alay. On the
Importance of TCP Splitting Proxies for Future 5G
mmWave Communications. In 2019 IEEE 44th LCN
Symposium on Emerging Topics in Networking (LCN
Symposium), pages 108–116, 2019.

[21] Michio Honda, Yoshifumi Nishida, Costin Raiciu, Adam
Greenhalgh, Mark Handley, and Hideyuki Tokuda. Is
it Still Possible to Extend TCP? In Proceedings of the
Internet Measurement Conference (IMC), pages 181–
194, 2011.

https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/101/materials/slides-101-iccrg-an-update-on-bbr-work-at-google-00
https://datatracker.ietf.org/meeting/119/materials/slides-119-ccwg-bbrv3-overview-and-google-deployment-00
https://datatracker.ietf.org/meeting/119/materials/slides-119-ccwg-bbrv3-overview-and-google-deployment-00
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-01.pdf
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-01.pdf
https://datatracker.ietf.org/doc/draft-cardwell-ccwg-bbr/
https://datatracker.ietf.org/doc/draft-cardwell-ccwg-bbr/
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
https://www.youtube.com/watch?v=ZVqQiA7h-W8
https://www.youtube.com/watch?v=ZVqQiA7h-W8
https://github.com/google/quiche/
https://github.com/google/quiche/


[22] Christian Huitema. picoquic. GitHub repository. https:
//github.com/private-octopus/picoquic, January 2025.

[23] Jana Iyengar and Martin Thomson. QUIC: A UDP-
Based Multiplexed and Secure Transport. RFC 9000,
May 2021.

[24] Van Jacobson and Michael J. Karels. Congestion Avoid-
ance and Control. In SIGCOMM 1988, Stanford, CA,
August 1988.

[25] Frode Kileng. Comments at IETF 121 PANRG ses-
sion. “there’s been a sharp decline of PEPs in mo-
bile networks in the last years. BBR is a cause for this.
(When AWS switched to BBR 2-3 years ago, through-
put of moblle networks with PEPs either declined or
a steady trend, while those without had a significant
increase in throughput. I.e. as measured bye 3rd party
benchmarks, e.g. Tutela)” https://zulip.ietf.org/#narrow/
stream/287-panrg/topic/ietf-121/near/144090.

[26] Mike Kosek, Hendrik Cech, Vaibhav Bajpai, and Jörg
Ott. Exploring Proxying QUIC and HTTP/3 for Satellite
Communication. In 2022 IFIP Networking Conference
(IFIP Networking), pages 1–9, 2022.

[27] Mike Kosek, Tanya Shreedhar, and Vaibhav Bajpai. Be-
yond QUIC v1: A First Look at Recent Transport Layer
IETF Standardization Efforts. IEEE Communications
Magazine, 59(4):24–29, 2021.

[28] Mike Kosek, Benedikt Spies, and Jörg Ott. Secure
Middlebox-Assisted QUIC. In 2023 IFIP Networking
Conference (IFIP Networking), pages 1–9. IEEE, 2023.

[29] Zsolt Krämer, Mirja Kühlewind, Marcus Ihlar, and Attila
Mihály. Cooperative performance enhancement using
QUIC tunneling in 5G cellular networks. In Proceedings
of the Applied Networking Research Workshop, ANRW
’21, page 49–51, New York, NY, USA, 2021. Association
for Computing Machinery.

[30] Nicolas Kuhn, François Michel, Ludovic Thomas, Em-
manuel Dubois, and Emmanuel Lochin. QUIC: Oppor-
tunities and threats in SATCOM. In 2020 10th Advanced
Satellite Multimedia Systems Conference and the 16th
Signal Processing for Space Communications Workshop
(ASMS/SPSC), pages 1–7, 2020.

[31] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio
Vicente, Charles Krasic, Dan Zhang, Fan Yang, Fedor
Kouranov, Ian Swett, Janardhan Iyengar, et al. The
QUIC Transport Protocol: Design and Internet-Scale
Deployment. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication
(SIGCOMM), pages 183–196, 2017.

[32] Aitor Martin and Naeem Khademi. On the Suitabil-
ity of BBR Congestion Control for QUIC Over GEO
SATCOM Networks. In Proceedings of the Workshop
on Applied Networking Research (ANRW), pages 1–8,
2022.

[33] Robin Marx, Joris Herbots, Wim Lamotte, and Peter
Quax. Same Standards, Different Decisions: A Study of
QUIC and HTTP/3 Implementation Diversity. In Pro-
ceedings of the Workshop on the Evolution, Performance,
and Interoperability of QUIC, pages 14–20, 2020.

[34] Matt Mathis and Jamshid Mahdavi. Deprecating the
TCP Macroscopic Model. ACM SIGCOMM Computer
Communication Review, 49(5):63–68, 2019.

[35] Matthew Mathis. Reflections on the TCP Macroscopic
Model. ACM SIGCOMM Computer Communication
Review, 39(1):47–49, 2008.

[36] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and
Teunis Ott. The Macroscopic Behavior of the TCP
Congestion Avoidance Algorithm. ACM SIGCOMM
Computer Communication Review, 27(3):67–82, 1997.

[37] Ayush Mishra, Xiangpeng Sun, Atishya Jain, Sameer
Pande, Raj Joshi, and Ben Leong. The Great Internet
TCP Congestion Control Census. Proceedings of the
ACM on Measurement and Analysis of Computing Sys-
tems, 3(3):1–24, 2019.

[38] Giorgos Papastergiou, Gorry Fairhurst, David Ros, Anna
Brunstrom, Karl-Johan Grinnemo, Per Hurtig, Naeem
Khademi, Michael Tüxen, Michael Welzl, Dragana Dam-
janovic, and Simone Mangiante. De-Ossifying the Inter-
net Transport Layer: A Survey and Future Perspectives.
IEEE Communications Surveys & Tutorials, 19(1):619–
639, 2017.

[39] Abhinav Pathak, Angela Wang, Cheng Huang, Albert
Greenberg, Y. Charlie Hu, Randy Kern, Jin Li, and Keith
Ross. Measuring and Evaluating TCP Splitting for
Cloud Services. In Proceedings of the 11th Interna-
tional Conference on Passive and Active Measurement
(PAM), pages 41–50, 2010.

[40] Adithya Abraham Philip, Ranysha Ware, Rukshani Atha-
pathu, Justine Sherry, and Vyas Sekar. Revisiting TCP
Congestion Control Throughput Models & Fairness
Properties at Scale. In Proceedings of the 21st ACM
Internet Measurement Conference (IMC), pages 96–103,
2021.

[41] Alain Pirovano and Fabien Garcia. A New Survey on
Improving TCP Performances Over Geostationary Satel-
lite Link. Network and Communication Technologies,
2(1):pp–xxx, 2013.

https://github.com/private-octopus/picoquic
https://github.com/private-octopus/picoquic
https://zulip.ietf.org/#narrow/stream/287-panrg/topic/ietf-121/near/144090
https://zulip.ietf.org/#narrow/stream/287-panrg/topic/ietf-121/near/144090


[42] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end
arguments in system design. ACM Transactions on
Computer Systems, 2(4):277–288, November 1984.

[43] Patrick Sattler, Juliane Aulbach, Johannes Zirngibl, and
Georg Carle. Towards a tectonic traffic shift? investi-
gating apple’s new relay network. In Proceedings of
the 22nd ACM Internet Measurement Conference (IMC),
pages 449–457, 2022.

[44] David Schinazi. Proxying UDP in HTTP. RFC 9298,
February 2021.

[45] David Schinazi and Lucas Pardue. HTTP Datagrams
and the Capsule Protocol. RFC 9297, August 2022.

[46] Marten Seemann. QUIC Interop Runner. https://interop.
seemann.io/, January 2025.

[47] Yeong-Jun Song, Geon-Hwan Kim, Imtiaz Mahmud,
Won-Kyeong Seo, and You-Ze Cho. Understanding
of BBRv2: Evaluation and Comparison with BBRv1
Congestion Control Algorithm. IEEE Access, 9:37131–
37145, 2021.

[48] Ludovic Thomas, Emmanuel Dubois, Nicolas Kuhn, and
Emmanuel Lochin. Google QUIC Performance Over
a Public SATCOM Access. International Journal of
Satellite Communications and Networking, 37(6):601–
611, 2019.

[49] W3Techs. Usage statistics of QUIC for websites. Web
Technology Surveys. https://w3techs.com/technologies/
details/ce-quic, April 2025.

[50] Ranysha Ware, Matthew K. Mukerjee, Srinivasan Se-
shan, and Justine Sherry. Modeling BBR’s Interactions
with Loss-Based Congestion Control. In Proceedings
of the Internet Measurement Conference (IMC), pages
137–143, 2019.

[51] Ranysha Ware, Adithya Abraham Philip, Nicholas Hun-
gria, Yash Kothari, Justine Sherry, and Srinivasan Se-
shan. CCAnalyzer: An Efficient and Nearly-Passive
Congestion Control Classifier. In Proceedings of the
ACM SIGCOMM 2024 Conference, pages 181–196,
2024.

[52] Gina Yuan, Matthew Sotoudeh, David K. Zhang,
Michael Welzl, David Mazières, and Keith Winstein.
Sidekick:In-Network Assistance for Secure End-to-End
Transport Protocols. In 21st USENIX Symposium on
Networked Systems Design and Implementation (NSDI
24), pages 1813–1830, 2024.

[53] Gina Yuan, David K. Zhang, Matthew Sotoudeh,
Michael Welzl, and Keith Winstein. Sidecar: In-Network
Performance Enhancements in the Age of Paranoid

Transport Protocols. In Proceedings of the 21st ACM
Workshop on Hot Topics in Networks, pages 221–227,
2022.

[54] Danesh Zeynali, Emilia N. Weyulu, Seifeddine Fathalli,
Balakrishnan Chandrasekaran, and Anja Feldmann.
Promises and Potential of BBRv3. In International Con-
ference on Passive and Active Network Measurement
(PAM), pages 249–272. Springer, 2024.

https://interop.seemann.io/
https://interop.seemann.io/
https://w3techs.com/technologies/details/ce-quic
https://w3techs.com/technologies/details/ce-quic


A Appendix
In the appendix, we present the raw data for our characteriza-
tions of each congestion control scheme.



0 1 2 3 4
Loss (%)

1

20

40

60

80

100
De

la
y 

(m
s)

0.93 0.94 0.90 0.88 0.85

0.91 0.83 0.70 0.61 0.49

0.89 0.81 0.74 0.65 0.53

0.88 0.77 0.73 0.64 0.54

0.85 0.79 0.72 0.64 0.55

0.82 0.77 0.69 0.58 0.49

TCP BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.92 0.90 0.87 0.80

0.92 0.76 0.60 0.47 0.35

0.89 0.80 0.69 0.61 0.46

0.85 0.78 0.66 0.55 0.45

0.84 0.77 0.67 0.58 0.45

0.80 0.75 0.65 0.54 0.33

TCP BBRv3, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.78 0.81 0.84 0.78 0.77

0.90 0.77 0.61 0.44 0.26

0.89 0.78 0.67 0.49 0.40

0.85 0.77 0.64 0.45 0.32

0.82 0.76 0.66 0.49 0.28

0.79 0.72 0.63 0.33 0.19

TCP BBRv3, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.78 0.79 0.81 0.74 0.72

0.91 0.76 0.62 0.38 0.28

0.87 0.77 0.66 0.51 0.34

0.84 0.76 0.65 0.49 0.30

0.82 0.74 0.58 0.49 0.26

0.79 0.71 0.54 0.34 0.21

TCP BBRv3, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.89 0.86 0.80 0.74

0.91 0.71 0.54 0.41 0.21

0.87 0.76 0.63 0.50 0.21

0.84 0.76 0.59 0.35 0.20

0.81 0.75 0.57 0.38 0.26

0.78 0.71 0.52 0.30 0.09

TCP BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(a) Linux TCP.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.94 0.94 0.94 0.94

0.94 0.92 0.85 0.78 0.73

0.93 0.89 0.82 0.71 0.60

0.91 0.89 0.83 0.73 0.64

0.89 0.88 0.84 0.78 0.69

0.88 0.87 0.83 0.77 0.70

Chromium QUIC BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.93 0.87 0.78 0.67 0.54

0.92 0.90 0.84 0.70 0.56

0.90 0.89 0.83 0.75 0.66

0.88 0.87 0.83 0.75 0.69

0.86 0.85 0.82 0.76 0.70

Chromium QUIC BBRv3, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.93

0.93 0.90 0.78 0.60 0.47

0.91 0.90 0.82 0.72 0.59

0.89 0.88 0.84 0.75 0.65

0.87 0.86 0.83 0.75 0.69

0.85 0.84 0.81 0.73 0.69

Chromium QUIC BBRv3, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.93 0.93 0.93 0.93

0.92 0.90 0.79 0.63 0.40

0.90 0.89 0.83 0.72 0.61

0.88 0.87 0.83 0.73 0.67

0.86 0.85 0.82 0.74 0.68

0.83 0.82 0.79 0.72 0.67

Chromium QUIC BBRv3, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.92 0.92 0.92 0.92

0.91 0.90 0.81 0.64 0.35

0.90 0.89 0.85 0.74 0.62

0.87 0.87 0.84 0.75 0.67

0.85 0.84 0.81 0.74 0.68

0.82 0.78 0.78 0.71 0.65

Chromium QUIC BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(b) Google quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.80 0.77 0.80 0.79

0.93 0.70 0.59 0.54 0.48

0.92 0.81 0.76 0.72 0.70

0.91 0.85 0.82 0.79 0.77

0.89 0.87 0.86 0.82 0.80

0.87 0.87 0.86 0.81 0.80

Picoquic QUIC BBRv3, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.61 0.58 0.59 0.63

0.92 0.57 0.48 0.43 0.40

0.91 0.75 0.70 0.66 0.62

0.90 0.83 0.79 0.76 0.75

0.89 0.86 0.83 0.81 0.78

0.86 0.86 0.83 0.82 0.76

Picoquic QUIC BBRv3, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.48 0.49 0.51 0.49

0.92 0.50 0.43 0.39 0.36

0.91 0.72 0.67 0.64 0.61

0.90 0.81 0.77 0.75 0.72

0.89 0.85 0.81 0.79 0.76

0.86 0.84 0.81 0.81 0.78

Picoquic QUIC BBRv3, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.91 0.38 0.38 0.40 0.42

0.91 0.49 0.42 0.36 0.33

0.91 0.71 0.65 0.64 0.61

0.90 0.80 0.78 0.75 0.71

0.88 0.81 0.81 0.79 0.76

0.86 0.84 0.82 0.80 0.78

Picoquic QUIC BBRv3, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.31 0.31 0.31 0.34

0.91 0.45 0.39 0.38 0.32

0.90 0.71 0.67 0.65 0.63

0.90 0.81 0.77 0.75 0.72

0.88 0.84 0.77 0.79 0.76

0.86 0.83 0.81 0.78 0.76

Picoquic QUIC BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(c) picoquic.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.89 0.86 0.80 0.74

0.91 0.71 0.54 0.41 0.21

0.87 0.76 0.63 0.50 0.21

0.84 0.76 0.59 0.35 0.20

0.81 0.75 0.57 0.38 0.26

0.78 0.71 0.52 0.30 0.09

TCP BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.89 0.86 0.80 0.74

0.91 0.71 0.54 0.41 0.21

0.87 0.76 0.63 0.50 0.21

0.84 0.76 0.59 0.35 0.20

0.81 0.75 0.57 0.38 0.26

0.78 0.71 0.52 0.30 0.09

TCP BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.89 0.86 0.80 0.74

0.91 0.71 0.54 0.41 0.21

0.87 0.76 0.63 0.50 0.21

0.84 0.76 0.59 0.35 0.20

0.81 0.75 0.57 0.38 0.26

0.78 0.71 0.52 0.30 0.09

TCP BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.89 0.86 0.80 0.74

0.91 0.71 0.54 0.41 0.21

0.87 0.76 0.63 0.50 0.21

0.84 0.76 0.59 0.35 0.20

0.81 0.75 0.57 0.38 0.26

0.78 0.71 0.52 0.30 0.09

TCP BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.89 0.86 0.80 0.74

0.91 0.71 0.54 0.41 0.21

0.87 0.76 0.63 0.50 0.21

0.84 0.76 0.59 0.35 0.20

0.81 0.75 0.57 0.38 0.26

0.78 0.71 0.52 0.30 0.09

TCP BBRv3, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

Figure 8: BBRv3.



0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.92 0.93 0.91 0.89 0.83

0.92 0.83 0.70 0.57 0.42

0.88 0.78 0.65 0.52 0.46

0.86 0.74 0.63 0.54 0.45

0.83 0.77 0.69 0.60 0.51

0.81 0.75 0.68 0.61 0.50

TCP BBRv2, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.91 0.90 0.87 0.84

0.90 0.74 0.58 0.40 0.28

0.87 0.78 0.66 0.48 0.30

0.84 0.75 0.63 0.52 0.38

0.81 0.76 0.64 0.56 0.39

0.79 0.74 0.63 0.49 0.37

TCP BBRv2, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.89 0.90 0.87 0.84 0.81

0.90 0.72 0.52 0.35 0.22

0.87 0.76 0.54 0.41 0.22

0.84 0.74 0.63 0.49 0.29

0.81 0.75 0.61 0.47 0.27

0.79 0.73 0.61 0.45 0.23

TCP BBRv2, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.90 0.90 0.86 0.84 0.79

0.90 0.72 0.50 0.29 0.16

0.86 0.74 0.62 0.39 0.23

0.83 0.75 0.59 0.44 0.25

0.81 0.73 0.60 0.41 0.25

0.78 0.72 0.61 0.44 0.00

TCP BBRv2, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.91 0.87 0.80 0.76

0.89 0.71 0.43 0.34 0.16

0.87 0.76 0.59 0.40 0.18

0.82 0.76 0.60 0.42 0.25

0.81 0.74 0.62 0.41 0.29

0.77 0.71 0.56 0.34 0.30

TCP BBRv2, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(a) Linux TCP.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.91 0.88 0.88 0.84 0.83

0.72 0.71 0.71 0.70 0.69

0.75 0.72 0.69 0.66 0.64

0.62 0.64 0.63 0.60 0.59

0.57 0.58 0.56 0.55 0.52

0.53 0.54 0.50 0.46 0.45

Cloudflare QUIC BBRv2, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.76 0.79 0.77 0.75 0.77

0.77 0.71 0.70 0.66 0.68

0.71 0.65 0.62 0.60 0.59

0.58 0.57 0.55 0.52 0.51

0.58 0.52 0.47 0.46 0.44

0.56 0.48 0.45 0.40 0.36

Cloudflare QUIC BBRv2, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.83 0.82 0.79 0.81 0.81

0.69 0.64 0.65 0.66 0.65

0.65 0.62 0.58 0.55 0.56

0.59 0.57 0.48 0.48 0.45

0.52 0.49 0.46 0.38 0.36

0.50 0.41 0.34 0.36 0.30

Cloudflare QUIC BBRv2, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.81 0.82 0.81 0.80 0.81

0.72 0.70 0.68 0.66 0.62

0.68 0.61 0.57 0.55 0.54

0.56 0.54 0.45 0.45 0.43

0.48 0.45 0.42 0.36 0.34

0.46 0.39 0.30 0.28 0.24

Cloudflare QUIC BBRv2, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.85 0.79 0.83 0.81 0.80

0.71 0.69 0.64 0.64 0.61

0.61 0.57 0.54 0.53 0.49

0.51 0.49 0.47 0.39 0.44

0.38 0.39 0.37 0.29 0.28

0.44 0.34 0.30 0.24 0.21

Cloudflare QUIC BBRv2, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(b) Cloudflare quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.91 0.87 0.80 0.76

0.89 0.71 0.43 0.34 0.16

0.87 0.76 0.59 0.40 0.18

0.82 0.76 0.60 0.42 0.25

0.81 0.74 0.62 0.41 0.29

0.77 0.71 0.56 0.34 0.30

TCP BBRv2, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.91 0.87 0.80 0.76

0.89 0.71 0.43 0.34 0.16

0.87 0.76 0.59 0.40 0.18

0.82 0.76 0.60 0.42 0.25

0.81 0.74 0.62 0.41 0.29

0.77 0.71 0.56 0.34 0.30

TCP BBRv2, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.91 0.87 0.80 0.76

0.89 0.71 0.43 0.34 0.16

0.87 0.76 0.59 0.40 0.18

0.82 0.76 0.60 0.42 0.25

0.81 0.74 0.62 0.41 0.29

0.77 0.71 0.56 0.34 0.30

TCP BBRv2, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.91 0.87 0.80 0.76

0.89 0.71 0.43 0.34 0.16

0.87 0.76 0.59 0.40 0.18

0.82 0.76 0.60 0.42 0.25

0.81 0.74 0.62 0.41 0.29

0.77 0.71 0.56 0.34 0.30

TCP BBRv2, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.91 0.87 0.80 0.76

0.89 0.71 0.43 0.34 0.16

0.87 0.76 0.59 0.40 0.18

0.82 0.76 0.60 0.42 0.25

0.81 0.74 0.62 0.41 0.29

0.77 0.71 0.56 0.34 0.30

TCP BBRv2, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

Figure 9: BBRv2.



0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.95 0.94 0.92 0.91

0.92 0.93 0.92 0.90 0.91

0.91 0.90 0.89 0.85 0.86

0.88 0.86 0.85 0.80 0.79

0.86 0.85 0.83 0.79 0.77

0.84 0.81 0.79 0.75 0.76

TCP BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.95 0.94 0.90 0.93

0.92 0.91 0.90 0.88 0.86

0.90 0.89 0.84 0.84 0.83

0.88 0.85 0.82 0.80 0.79

0.85 0.81 0.77 0.77 0.72

0.82 0.77 0.75 0.73 0.73

TCP BBRv1, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.93 0.92 0.92

0.93 0.92 0.87 0.87 0.86

0.89 0.87 0.84 0.84 0.82

0.87 0.84 0.82 0.79 0.78

0.85 0.77 0.77 0.74 0.74

0.82 0.76 0.72 0.69 0.67

TCP BBRv1, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.93 0.92 0.91

0.92 0.91 0.89 0.88 0.86

0.89 0.87 0.85 0.82 0.82

0.87 0.82 0.79 0.76 0.75

0.84 0.78 0.75 0.74 0.72

0.80 0.75 0.72 0.68 0.68

TCP BBRv1, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.93 0.93 0.90

0.90 0.90 0.89 0.88 0.86

0.89 0.86 0.84 0.81 0.81

0.86 0.82 0.78 0.77 0.77

0.83 0.77 0.74 0.73 0.72

0.81 0.72 0.70 0.68 0.69

TCP BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(a) Linux TCP.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.94 0.94 0.94 0.94 0.94

0.92 0.89 0.87 0.85 0.84

0.91 0.88 0.87 0.87 0.88

0.89 0.88 0.88 0.88 0.88

0.87 0.87 0.88 0.86 0.86

0.86 0.86 0.86 0.84 0.84

Chromium QUIC BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.93

0.91 0.90 0.90 0.91 0.90

0.90 0.90 0.90 0.90 0.88

0.88 0.88 0.88 0.86 0.87

0.86 0.86 0.86 0.85 0.84

0.84 0.84 0.85 0.83 0.82

Chromium QUIC BBRv1, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.93

0.91 0.91 0.92 0.92 0.91

0.90 0.88 0.90 0.90 0.88

0.87 0.86 0.87 0.87 0.85

0.85 0.84 0.84 0.84 0.82

0.83 0.82 0.83 0.82 0.81

Chromium QUIC BBRv1, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.92 0.92 0.92 0.92

0.90 0.91 0.90 0.90 0.90

0.89 0.88 0.88 0.88 0.88

0.86 0.85 0.85 0.86 0.84

0.84 0.83 0.83 0.83 0.83

0.82 0.81 0.81 0.80 0.78

Chromium QUIC BBRv1, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.92 0.91 0.92 0.91

0.89 0.88 0.89 0.89 0.89

0.88 0.87 0.86 0.87 0.86

0.85 0.84 0.84 0.83 0.83

0.83 0.81 0.80 0.80 0.79

0.80 0.77 0.77 0.76 0.74

Chromium QUIC BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(b) Google quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.87 0.86 0.84 0.81

0.73 0.74 0.70 0.68 0.68

0.76 0.73 0.70 0.66 0.64

0.61 0.66 0.64 0.62 0.58

0.60 0.59 0.53 0.52 0.49

0.55 0.51 0.50 0.47 0.45

Cloudflare QUIC BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.76 0.74 0.79 0.79 0.78

0.75 0.69 0.70 0.70 0.69

0.70 0.64 0.59 0.60 0.58

0.56 0.57 0.54 0.52 0.49

0.60 0.53 0.47 0.45 0.44

0.55 0.51 0.43 0.43 0.39

Cloudflare QUIC BBRv1, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.83 0.84 0.81 0.80 0.82

0.63 0.68 0.66 0.67 0.67

0.64 0.60 0.60 0.57 0.56

0.59 0.56 0.54 0.50 0.47

0.53 0.47 0.42 0.43 0.37

0.50 0.40 0.36 0.32 0.27

Cloudflare QUIC BBRv1, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.82 0.82 0.82 0.79 0.80

0.72 0.70 0.68 0.64 0.62

0.65 0.62 0.58 0.56 0.53

0.56 0.53 0.47 0.43 0.39

0.47 0.44 0.41 0.35 0.31

0.44 0.37 0.38 0.26 0.24

Cloudflare QUIC BBRv1, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.83 0.84 0.84 0.81 0.83

0.70 0.69 0.63 0.66 0.60

0.61 0.59 0.54 0.52 0.53

0.52 0.47 0.48 0.40 0.35

0.38 0.40 0.37 0.30 0.29

0.44 0.36 0.26 0.24 0.21

Cloudflare QUIC BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(c) Cloudflare quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.93 0.93 0.92 0.91 0.91

0.92 0.91 0.90 0.89 0.88

0.91 0.90 0.88 0.87 0.86

0.89 0.87 0.85 0.82 0.81

0.88 0.85 0.82 0.84 0.81

Picoquic QUIC BBRv1, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.93 0.94

0.93 0.92 0.92 0.91 0.91

0.91 0.90 0.89 0.88 0.87

0.90 0.88 0.87 0.84 0.82

0.88 0.86 0.85 0.82 0.79

0.87 0.82 0.82 0.81 0.75

Picoquic QUIC BBRv1, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.94 0.94 0.94 0.94 0.93

0.92 0.91 0.90 0.89 0.89

0.91 0.90 0.88 0.87 0.85

0.89 0.88 0.83 0.84 0.80

0.88 0.85 0.81 0.79 0.79

0.86 0.82 0.82 0.81 0.75

Picoquic QUIC BBRv1, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.94 0.94 0.94 0.94

0.92 0.90 0.90 0.90 0.88

0.91 0.90 0.88 0.86 0.87

0.89 0.87 0.85 0.82 0.81

0.87 0.83 0.82 0.78 0.79

0.85 0.81 0.80 0.78 0.76

Picoquic QUIC BBRv1, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.94 0.94 0.94 0.94

0.92 0.90 0.90 0.89 0.88

0.91 0.89 0.88 0.86 0.85

0.89 0.86 0.85 0.83 0.82

0.87 0.84 0.81 0.79 0.73

0.85 0.80 0.79 0.78 0.73

Picoquic QUIC BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(d) picoquic.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.93 0.93 0.90

0.90 0.90 0.89 0.88 0.86

0.89 0.86 0.84 0.81 0.81

0.86 0.82 0.78 0.77 0.77

0.83 0.77 0.74 0.73 0.72

0.81 0.72 0.70 0.68 0.69

TCP BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.93 0.93 0.90

0.90 0.90 0.89 0.88 0.86

0.89 0.86 0.84 0.81 0.81

0.86 0.82 0.78 0.77 0.77

0.83 0.77 0.74 0.73 0.72

0.81 0.72 0.70 0.68 0.69

TCP BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.93 0.93 0.90

0.90 0.90 0.89 0.88 0.86

0.89 0.86 0.84 0.81 0.81

0.86 0.82 0.78 0.77 0.77

0.83 0.77 0.74 0.73 0.72

0.81 0.72 0.70 0.68 0.69

TCP BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.93 0.93 0.90

0.90 0.90 0.89 0.88 0.86

0.89 0.86 0.84 0.81 0.81

0.86 0.82 0.78 0.77 0.77

0.83 0.77 0.74 0.73 0.72

0.81 0.72 0.70 0.68 0.69

TCP BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.93 0.93 0.90

0.90 0.90 0.89 0.88 0.86

0.89 0.86 0.84 0.81 0.81

0.86 0.82 0.78 0.77 0.77

0.83 0.77 0.74 0.73 0.72

0.81 0.72 0.70 0.68 0.69

TCP BBRv1, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

Figure 10: BBRv2.



0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.92 0.86 0.77

0.93 0.45 0.28 0.22 0.18

0.91 0.25 0.15 0.12 0.09

0.89 0.18 0.11 0.08 0.07

0.87 0.14 0.08 0.06 0.05

0.85 0.11 0.07 0.05 0.04

TCP CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.88 0.77 0.61

0.93 0.22 0.14 0.11 0.09

0.90 0.12 0.08 0.06 0.04

0.88 0.09 0.05 0.04 0.03

0.85 0.07 0.04 0.03 0.03

0.82 0.06 0.03 0.03 0.02

TCP CUBIC, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.94 0.86 0.69 0.50

0.92 0.15 0.10 0.07 0.06

0.90 0.08 0.05 0.04 0.03

0.87 0.06 0.04 0.03 0.02

0.84 0.04 0.03 0.02 0.00

0.79 0.04 0.03 0.02 0.00

TCP CUBIC, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.93 0.82 0.67 0.43

0.93 0.11 0.07 0.06 0.05

0.90 0.06 0.03 0.03 0.02

0.86 0.04 0.03 0.02 0.00

0.81 0.03 0.02 0.00 0.00

0.76 0.03 0.02 0.00 0.00

TCP CUBIC, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.91 0.79 0.60 0.38

0.92 0.09 0.06 0.04 0.04

0.89 0.05 0.03 0.02 0.02

0.87 0.03 0.02 0.00 0.00

0.84 0.03 0.00 0.00 0.00

0.80 0.02 0.00 0.00 0.00

TCP CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(a) Linux TCP.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.94 0.94 0.94 0.94 0.94

0.94 0.53 0.37 0.30 0.26

0.93 0.29 0.20 0.15 0.13

0.92 0.21 0.13 0.11 0.09

0.91 0.17 0.11 0.08 0.07

0.90 0.14 0.09 0.07 0.06

Chromium QUIC CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.93 0.27 0.18 0.15 0.13

0.92 0.14 0.09 0.07 0.06

0.91 0.09 0.07 0.05 0.05

0.90 0.08 0.05 0.04 0.03

0.88 0.06 0.04 0.04 0.03

Chromium QUIC CUBIC, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.93 0.92

0.93 0.17 0.12 0.10 0.08

0.92 0.09 0.06 0.05 0.04

0.91 0.06 0.04 0.04 0.03

0.89 0.05 0.04 0.03 0.02

0.87 0.04 0.03 0.02 0.02

Chromium QUIC CUBIC, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.93 0.92 0.88 0.83

0.93 0.13 0.09 0.07 0.06

0.91 0.07 0.04 0.04 0.03

0.90 0.05 0.03 0.03 0.02

0.88 0.04 0.03 0.02 0.02

0.86 0.03 0.02 0.02 0.00

Chromium QUIC CUBIC, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.92 0.87 0.78 0.70

0.92 0.10 0.07 0.06 0.05

0.91 0.06 0.04 0.03 0.02

0.89 0.04 0.02 0.02 0.02

0.87 0.03 0.02 0.00 0.00

0.85 0.02 0.02 0.00 0.00

Chromium QUIC CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(b) Google quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.91 0.85 0.85 0.79 0.75

0.89 0.78 0.57 0.46 0.35

0.86 0.79 0.52 0.28 0.21

0.82 0.73 0.52 0.25 0.15

0.79 0.65 0.49 0.27 0.12

0.75 0.59 0.43 0.28 0.11

Cloudflare QUIC CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.91 0.88 0.87 0.80 0.73

0.88 0.78 0.34 0.24 0.19

0.85 0.59 0.50 0.27 0.00

0.81 0.62 0.38 0.23 0.00

0.76 0.58 0.40 0.26 0.09

0.69 0.51 0.42 0.30 0.14

Cloudflare QUIC CUBIC, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.91 0.90 0.85 0.80 0.74

0.89 0.66 0.29 0.00 0.00

0.84 0.65 0.46 0.00 0.00

0.77 0.51 0.33 0.00 0.00

0.68 0.49 0.35 0.22 0.00

0.62 0.44 0.33 0.00 0.00

Cloudflare QUIC CUBIC, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.90 0.88 0.81 0.73

0.89 0.65 0.00 0.00 0.00

0.83 0.54 0.42 0.00 0.00

0.70 0.47 0.27 0.08 0.00

0.63 0.43 0.26 0.00 0.00

0.56 0.39 0.31 0.00 0.00

Cloudflare QUIC CUBIC, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.92 0.91 0.88 0.82 0.70

0.88 0.70 0.16 0.09 0.15

0.78 0.48 0.07 0.00 0.00

0.65 0.45 0.30 0.35 0.00

0.58 0.41 0.30 0.19 0.00

0.53 0.34 0.27 0.17 0.04

Cloudflare QUIC CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(c) Cloudflare quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.93 0.88 0.74 0.60 0.48

0.93 0.75 0.50 0.41 0.31

0.91 0.69 0.38 0.31 0.24

0.90 0.65 0.36 0.27 0.21

0.84 0.55 0.28 0.24 0.15

Picoquic QUIC CUBIC, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.93 0.79 0.52 0.37 0.30

0.92 0.59 0.41 0.23 0.18

0.91 0.57 0.28 0.18 0.12

0.90 0.52 0.29 0.12 0.09

0.89 0.61 0.31 0.11 0.08

Picoquic QUIC CUBIC, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)
0.94 0.94 0.94 0.94 0.93

0.93 0.68 0.40 0.28 0.21

0.92 0.60 0.30 0.16 0.11

0.91 0.45 0.27 0.11 0.07

0.90 0.42 0.18 0.08 0.07

0.89 0.49 0.25 0.09 0.07

Picoquic QUIC CUBIC, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n
0 1 2 3 4

Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.93 0.92

0.92 0.51 0.36 0.23 0.15

0.92 0.47 0.23 0.12 0.08

0.90 0.61 0.20 0.08 0.07

0.88 0.61 0.24 0.08 0.06

0.80 0.56 0.18 0.08 0.06

Picoquic QUIC CUBIC, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.93 0.91 0.89

0.92 0.48 0.30 0.17 0.11

0.92 0.51 0.21 0.09 0.07

0.91 0.55 0.19 0.07 0.06

0.90 0.51 0.16 0.07 0.06

0.88 0.50 0.12 0.07 0.00

Picoquic QUIC CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(d) picoquic.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.91 0.79 0.60 0.38

0.92 0.09 0.06 0.04 0.04

0.89 0.05 0.03 0.02 0.02

0.87 0.03 0.02 0.00 0.00

0.84 0.03 0.00 0.00 0.00

0.80 0.02 0.00 0.00 0.00

TCP CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.91 0.79 0.60 0.38

0.92 0.09 0.06 0.04 0.04

0.89 0.05 0.03 0.02 0.02

0.87 0.03 0.02 0.00 0.00

0.84 0.03 0.00 0.00 0.00

0.80 0.02 0.00 0.00 0.00

TCP CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.91 0.79 0.60 0.38

0.92 0.09 0.06 0.04 0.04

0.89 0.05 0.03 0.02 0.02

0.87 0.03 0.02 0.00 0.00

0.84 0.03 0.00 0.00 0.00

0.80 0.02 0.00 0.00 0.00

TCP CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.91 0.79 0.60 0.38

0.92 0.09 0.06 0.04 0.04

0.89 0.05 0.03 0.02 0.02

0.87 0.03 0.02 0.00 0.00

0.84 0.03 0.00 0.00 0.00

0.80 0.02 0.00 0.00 0.00

TCP CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.91 0.79 0.60 0.38

0.92 0.09 0.06 0.04 0.04

0.89 0.05 0.03 0.02 0.02

0.87 0.03 0.02 0.00 0.00

0.84 0.03 0.00 0.00 0.00

0.80 0.02 0.00 0.00 0.00

TCP CUBIC, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

Figure 11: CUBIC.



0 1 2 3 4
Loss (%)

1

20

40

60

80

100
De

la
y 

(m
s)

0.93 0.94 0.91 0.88 0.83

0.90 0.47 0.30 0.23 0.19

0.87 0.24 0.16 0.12 0.10

0.83 0.16 0.11 0.08 0.07

0.82 0.12 0.08 0.06 0.05

0.78 0.10 0.06 0.05 0.04

TCP Reno, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.91 0.86 0.73

0.89 0.23 0.15 0.11 0.09

0.85 0.12 0.08 0.06 0.05

0.81 0.08 0.06 0.04 0.03

0.75 0.06 0.04 0.03 0.03

0.69 0.05 0.03 0.02 0.02

TCP Reno, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.93 0.90 0.81 0.70

0.87 0.16 0.10 0.08 0.06

0.85 0.08 0.06 0.04 0.03

0.78 0.05 0.03 0.03 0.02

0.73 0.04 0.03 0.02 0.00

0.65 0.03 0.02 0.00 0.00

TCP Reno, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.93 0.89 0.78 0.64

0.88 0.12 0.08 0.06 0.05

0.83 0.06 0.04 0.03 0.02

0.76 0.04 0.03 0.02 0.00

0.73 0.03 0.02 0.00 0.00

0.71 0.02 0.00 0.00 0.00

TCP Reno, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.92 0.84 0.76 0.57

0.87 0.09 0.06 0.04 0.04

0.84 0.05 0.03 0.02 0.02

0.78 0.03 0.02 0.00 0.00

0.70 0.02 0.00 0.00 0.00

0.66 0.02 0.00 0.00 0.00

TCP Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(a) Linux TCP.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.94 0.76 0.53 0.41 0.36

0.93 0.42 0.27 0.21 0.18

0.92 0.28 0.19 0.15 0.12

0.91 0.22 0.15 0.12 0.10

0.90 0.21 0.12 0.10 0.08

Chromium QUIC Reno, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.94

0.93 0.39 0.26 0.21 0.17

0.92 0.20 0.13 0.11 0.09

0.91 0.14 0.09 0.07 0.06

0.90 0.11 0.07 0.06 0.00

0.89 0.09 0.06 0.00 0.00

Chromium QUIC Reno, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.94 0.94 0.94 0.94 0.93

0.93 0.26 0.17 0.14 0.12

0.92 0.13 0.09 0.07 0.06

0.91 0.09 0.06 0.00 0.00

0.89 0.07 0.00 0.00 0.00

0.87 0.00 0.00 0.00 0.00

Chromium QUIC Reno, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.93 0.92 0.92 0.91

0.93 0.20 0.13 0.10 0.09

0.91 0.10 0.07 0.00 0.00

0.90 0.07 0.00 0.00 0.00

0.88 0.00 0.00 0.00 0.00

0.86 0.00 0.00 0.00 0.00

Chromium QUIC Reno, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.93 0.92 0.92 0.90 0.86

0.92 0.16 0.10 0.08 0.07

0.91 0.08 0.00 0.00 0.00

0.89 0.06 0.00 0.00 0.00

0.87 0.00 0.00 0.00 0.00

0.85 0.00 0.00 0.00 0.00

Chromium QUIC Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(b) Google quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.89 0.54 0.52 0.48 0.49

0.89 0.55 0.35 0.21 0.13

0.84 0.35 0.17 0.11 0.00

0.80 0.23 0.13 0.10 0.06

0.74 0.19 0.10 0.07 0.00

0.71 0.14 0.11 0.06 0.00

Cloudflare QUIC Reno, 10 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.90 0.68 0.57 0.54 0.45

0.86 0.31 0.18 0.09 0.00

0.81 0.19 0.09 0.05 0.00

0.78 0.11 0.06 0.00 0.00

0.68 0.08 0.06 0.00 0.00

0.73 0.07 0.04 0.00 0.00

Cloudflare QUIC Reno, 20 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.79 0.55 0.55 0.44 0.43

0.85 0.21 0.00 0.00 0.00

0.80 0.12 0.04 0.04 0.00

0.79 0.08 0.00 0.00 0.00

0.69 0.06 0.00 0.00 0.00

0.54 0.04 0.00 0.00 0.00

Cloudflare QUIC Reno, 30 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.74 0.64 0.49 0.41 0.35

0.84 0.16 0.00 0.00 0.00

0.76 0.09 0.06 0.00 0.00

0.72 0.06 0.00 0.00 0.00

0.54 0.04 0.00 0.00 0.00

0.44 0.00 0.00 0.00 0.00

Cloudflare QUIC Reno, 40 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.83 0.33 0.38 0.39 0.27

0.84 0.12 0.00 0.00 0.00

0.83 0.00 0.00 0.00 0.00

0.59 0.04 0.00 0.00 0.00

0.45 0.00 0.00 0.00 0.00

0.37 0.00 0.00 0.00 0.00

Cloudflare QUIC Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

(c) Cloudflare quiche.

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.92 0.84 0.76 0.57

0.87 0.09 0.06 0.04 0.04

0.84 0.05 0.03 0.02 0.02

0.78 0.03 0.02 0.00 0.00

0.70 0.02 0.00 0.00 0.00

0.66 0.02 0.00 0.00 0.00

TCP Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.92 0.84 0.76 0.57

0.87 0.09 0.06 0.04 0.04

0.84 0.05 0.03 0.02 0.02

0.78 0.03 0.02 0.00 0.00

0.70 0.02 0.00 0.00 0.00

0.66 0.02 0.00 0.00 0.00

TCP Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.92 0.84 0.76 0.57

0.87 0.09 0.06 0.04 0.04

0.84 0.05 0.03 0.02 0.02

0.78 0.03 0.02 0.00 0.00

0.70 0.02 0.00 0.00 0.00

0.66 0.02 0.00 0.00 0.00

TCP Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.92 0.84 0.76 0.57

0.87 0.09 0.06 0.04 0.04

0.84 0.05 0.03 0.02 0.02

0.78 0.03 0.02 0.00 0.00

0.70 0.02 0.00 0.00 0.00

0.66 0.02 0.00 0.00 0.00

TCP Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

0 1 2 3 4
Loss (%)

1

20

40

60

80

100

De
la

y 
(m

s)

0.95 0.92 0.84 0.76 0.57

0.87 0.09 0.06 0.04 0.04

0.84 0.05 0.03 0.02 0.02

0.78 0.03 0.02 0.00 0.00

0.70 0.02 0.00 0.00 0.00

0.66 0.02 0.00 0.00 0.00

TCP Reno, 50 Mbit/s

0.0

0.2

0.4

0.6

0.8

1.0

Lin
k 

Ra
te

 U
til

iza
tio

n

Figure 12: Reno.


	Introduction
	Background
	The Split Throughput Heuristic
	Analyzing Split Throughput Benefit in a Single Network Setting
	Caching Measurements for Analysis
	Limitations

	Measurement Methodology
	Results
	Finding: Splitting has become significantly more beneficial to TCP BBR since it was initially released in 2016.
	Finding: There exist classes of network paths where TCP BBRv3 would significantly benefit from splitting but TCP CUBIC would not.
	Finding: QUIC implementations of the same congestion control schemes vary significantly, and further differ from Linux's TCP implementations.

	Accuracy Analysis
	End-to-End Throughput Accuracy
	Split Throughput Accuracy

	Conclusion
	Appendix

