
Scalable Fault Tolerance for High-Performance Streaming
Dataflow

by

Gina Yuan

B.S., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2019

© Massachusetts Institute of Technology 2019. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

September 3, 2019

Certified by .
Robert T. Morris

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by. .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Scalable Fault Tolerance for High-Performance Streaming Dataflow

by

Gina Yuan

Submitted to the Department of Electrical Engineering and Computer Science
on September 3, 2019, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract
Streaming dataflow systems offer an appealing alternative to classic MySQL / memcached
web backend stacks. But websites must not go down, and current fault tolerance techniques
for dataflow systems either come with long downtimes during recovery, or fail to scale
to large deployments due to the overhead of global coordination. For example, in the
failure of a single dataflow node, existing lineage-based techniques take a long time to
recompute all lost and downstream state, while checkpointing techniques require costly
global coordination for rollback recovery.

This thesis presents a causal logging approach to fault tolerance that rolls back and
replays the execution of only the failed node, without any global coordination. The key to
knowing how to replay a valid execution while ensuring exactly-once semantics is a small,
constant-size tree clock piggybacked onto each message, incurring runtime overheads that
are low and scalable. After recovery, the state of the system is indistinguishable from one
that never failed at all.

We implement and evaluate the protocol on Noria, a streaming dataflow backend for
read-heavy web applications. Compared to Noria’s original protocol of lineage-based re-
covery, tree clock recovery time is constant in relation to state size and graph size. Ex-
perimental results show sub-second recovery times with 1.5ms runtime overheads, which
translates to a 290x improvement in recovery time.

Thesis Supervisor: Robert T. Morris
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

Robert, for his wise and deliberate advice, calming conversations, and providing direction
exactly when I needed it.

Malte, for his bountiful optimism and energetic approach to research, and inspiring me
to look at problems a different way.

Jon, for every time I walked up to his desk when research got tough, and left with my
spirit refueled and passion renewed.

Raul, Eddie, Frans, Albert, Justin, Sam, and everyone else in PDOS and the Database
Group who has shaped me into the researcher and software engineer I am today.

MIT Sport Taekwondo, especially Yang, Rachel, Renee, Andrew, Tahin, and Master
Chuang, for giving me a second home at MIT.

My parents for their endless love and support.

5

6

Contents

1 Introduction 11

1.1 Summary . 13

1.2 Contributions . 13

2 Background and Related Work 15

2.1 Noria: the dataflow model . 15

2.2 Lineage-based recovery . 16

2.3 Checkpointing . 16

2.4 Causal Logging . 17

3 Design 19

3.1 Normal operation . 19

3.1.1 Tree clocks . 20

3.1.2 Payload log . 21

3.1.3 Diff log . 21

3.1.4 Message processing algorithm . 22

3.2 Failure . 23

3.2.1 Controller . 23

3.2.2 Recovery protocol . 24

3.2.3 Deduplication . 26

3.3 Ensuring a valid execution order . 26

3.3.1 Execution replay table . 27

3.3.2 Solving the ER table . 28

7

3.3.3 Using the ER table to replay messages 30

3.4 Optimizations . 31

3.4.1 Neighborhoods . 31

3.4.2 Log truncation . 32

4 Implementation 33

5 Evaluation 35

5.1 Benchmarking methodology . 35

5.1.1 Dataflow graphs . 35

5.1.2 Hardware . 37

5.2 Read staleness . 37

5.3 Read and write latency . 40

5.4 Recovery time . 41

6 Correctness 45

6.1 Invariants . 45

6.2 Proof: the recovery protocol produces a valid execution order. 46

6.2.1 Each Ci’s inputs reflect a valid execution after recovery. 46

6.2.2 B′’s inputs reflect a valid execution after recovery. 47

6.2.3 B′’s outputs determine valid inputs to each Ci after recovery. 48

6.2.4 The recovery protocol is correct with log truncation. 48

6.2.5 Summary . 49

6.3 Proof: eventually, the system can recover again after a failure. 49

7 Extensions and Future Work 51

7.1 Stateful recovery . 51

7.2 Multiple concurrent failures . 51

7.3 Other work . 52

8 Conclusion 53

8

List of Figures

2-1 Processing a write in the dataflow graph. 16

3-1 Bookkeeping state in a node for recovery. 20

3-2 A node’s tree clock. 20

3-3 A node’s payload log. 21

3-4 A node’s diff log. 22

3-5 A node receives a message and applies a diff to its tree clock. 22

3-6 A failed node with multiple parents and multiple children. 23

3-7 Recovery protocol officiated by the controller. 25

3-8 An invalid execution as the result of processing messages in the order they

were received. 26

3-9 Table used to determine a valid execution replay. 27

3-10 Empty ER table for the restarted node B′ in Fig. 3-6. 28

3-11 Algebraic approach to solving the ER table. 29

3-12 The diff log of the restarted node after recovery. 31

3-13 The apply diff operation with tree clocks of bounded size. 31

4-1 The clock data structures in the implementation 33

4-2 Recovery-related bookkeeping for each node in the implementation. 34

4-3 The messages exchanged in the recovery protocol, in the implementation. . 34

5-1 The SQL tables and queries used in the benchmark. 36

5-2 The sharded dataflow graph used in the performance benchmark. 37

5-3 Offered load vs. write propagation time. 38

9

5-4 The size of message components leaving the sharder node. 39

5-5 Offered load vs. the number of ways a sharder splits an outgoing message. . 39

5-6 Offered load vs. read latency . 40

5-7 Offered load vs. write latency. 40

5-8 Write propagation over time for each recovery protocol. 41

5-9 Number of articles vs. recovery time. 42

10

Chapter 1

Introduction

Noria is a streaming dataflow system for read-heavy web application backends, intended
to replace the classic MySQL / memcached stack [16]. In this use case, Noria requires the
resources of many computers to support thousands of latency-sensitive end users simulta-
neously accessing hundreds of materialized views. Noria shards the backend to spread the
work across machines, a common approach to distributing load [1]. This results in dataflow
graphs that may have hundreds of nodes spread over multiple computers.

At the scale of a large website, which may necessitate hundreds or thousands of shards
to keep up with load, machine failures are inevitable. When failures happen, the backend
must be able to restore the system to a globally-consistent state, which is a state the system
could have been in had no failure happened at all. Like many other database and dataflow
systems [14, 20], Noria maintains a strict set of correctness guarantees across its multiple
machines. Noria requires materialized views to be eventually-consistent, and each node
must process updates exactly-once and in the same order they were received. Meanwhile,
the system must remain online to not disrupt users’ abilities to use the web application.

Consider the failure of a single computer in the fail-stop model of failure [23]. The
computer immediately loses the dataflow nodes on the computer, messages in transit to
and from the computer, and any materialized state in the nodes. For simplicity, assume the
failed computer has a single dataflow node, and that the node does not have any materialized
state.

Imagine we restarted the failed node on a new computer. If upstream nodes continued
as normal, downstream nodes would never receive the messages lost in the failure. We can
replay lost messages from the in-memory logs of the restarted node’s parents, but then we
would need to know exactly where to start to avoid sending duplicates or losing a message.
Even if we knew where to start, the restarted node may interleave messages from its parents
in a different order, producing an output order that is inconsistent with messages some of
its children have already seen. The non-determinism in execution order after failure is a
well-established problem in similar approaches [13, 4, 28].

To avoid the complexity of tracking where and what order messages were sent, No-
ria currently purges the node’s entire downstream graph and recomputes the state from
scratch. Some nodes may have been on surviving computers, but Noria redundantly purges
and recomputes their states as well. Like in other coarse-grained lineage recovery solu-
tions [30, 28], recovery time with this protocol is proportional to the size of state in the

11

graph. Rebuilding the state can take days or even weeks with large amounts of historic
data. This is a problem for long-running web applications with many clients, where mas-
sive amounts of data accumulate over time and high availability is mission-critical [15, 17].

An alternative is to restore the graph from a previously-consistent checkpoint without
having to rebuild the state from scratch. Global checkpointing solutions incur high runtime
overheads due to the need for global coordination in the normal case [22, 21]. Distributed
checkpointing eliminates overheads in the normal case [6, 8], but still requires costly global
coordination to roll back the entire graph in the event of the failure. In this case, the
recovery time is proportional to the number of dataflow nodes in the graph. As a result,
checkpointing also does not scale to the large, complex graphs we expect from Noria.

Causal logging is a class of fault tolerance techniques that rolls back only the failed
node to return the system to a globally-consistent state [4, 13]. The main idea behind
causal logging is that a valid execution only needs to observe the causal effects of previ-
ous messages, not to be exactly the same. Some causal information, or data lineage, is
piggybacked onto each existing message and tracked in each node. During recovery of a
failed node, the remaining nodes piece together their causal information to produce a valid
execution. In particular, they use the lineage to determine which messages to replay and
what order to process them in to reflect a valid interleaving of messages.

The naive approach to causal logging incurs large runtime overheads. Since the lin-
eage information is passed through the data plane, every additional message compounds
the overhead of piggybacked lineage information [4]. While batch processing systems
limit the frequency of messages [18, 12, 31, 7], continuous stream processing systems may
send millions of messages per second at milliseconds latency [22, 19, 3]. The lineage in-
formation itself can also be large and proportional to the size of the graph. As a result,
causal logging techniques traditionally trade-off the accuracy of lineage for lower runtime
overheads [4].

This thesis presents a new causal-logging approach to fault tolerance for Noria. This so-
lution incurs low runtime overheads while guaranteeing exactly-once semantics, against the
assumption that consistency with causal logging requires a heavy runtime cost. The key to
achieving low runtime overheads in Noria is a small, constant-size tree clock that includes
only the changed lineage information, and whose size is independent of the structure of the
graph. By piggybacking the constant-size tree clock onto each message, we encapsulate
enough information to restore the system to a globally-consistent state, without any global
coordination. Our current implementation does not explicitly support concurrent failures
of multiple nodes or failures of stateful nodes, but we believe that our model can easily be
generalized to these use cases in future work.

In exchange for forwarding only small amounts of lineage information, our solution
requires a more complex recovery protocol. A controller officiates the recovery protocol
in the coordination plane, as opposed to the data plane, and invokes a series of message
exchanges between the controller, the restarted node, and the immediate neighbors of the
restarted node. If the node’s execution is necessarily deterministic, the controller only needs
to determine where each node should resume sending messages from its log. Otherwise, the
controller invokes an execution replay algorithm to determine the interleaving of messages
received by the restarted node.

12

1.1 Summary
In summary, this thesis presents a scalable approach to fault tolerance using a low-overhead
causal logging technique called tree clocks, combined with a recovery protocol for deter-
ministic failures and an execution replay algorithm for non-deterministic ones. The ap-
proach is scalable because we can add more machines to the system without impacting
recovery time or runtime overhead. We implement the approach on Noria with the follow-
ing correctness and performance goals:

• Correctness: Updates are reflected in the outputs exactly-once and are processed
by nodes in the order they are sent. If no new updates are made, materialized views
eventually reflect all updates up to the last updated value i.e. eventual consistency.

• Performance: Recovery time and runtime overhead are constant in relation to the
amount of state and the number of nodes in the dataflow graph. Both are reasonably
low.

Currently, the scope of our model only includes computer failures that affect a single
dataflow node, which must be stateless. The model also does not currently support partially-
stateful and dynamic dataflow graphs. However, we believe the recovery protocol is general
enough to integrate these properties, which we address in Future Work (§7).

1.2 Contributions
The contributions of this thesis are:

• Tree clocks: an abstraction for tracking data lineage, which is where and in what
order messages are sent, with low-overhead local coordination.

• Recovery protocol: a scalable fault tolerance protocol that uses the causal logging
information in tree clocks to recover from deterministic single-node failures.

• Execution replay: an algorithm that combines with the recovery protocol to resolve
non-determinism in failures and produce a globally-consistent state.

• Implementation: a prototype in Noria with an evaluation of runtime overheads in
the normal case and recovery time after failure.

13

14

Chapter 2

Background and Related Work

2.1 Noria: the dataflow model

Noria is a streaming dataflow system intended to replace the classic MySQL / memcached
stack. The core component of the system is a high-performance dataflow graph layered
over a traditional database. The client first specifies a commonly-used SQL query, like
one that is called when loading a website frontend. Noria translates the SQL query into
a dataflow graph of nodes, or relational operators, where nodes are sometimes shared by
multiple queries to reuse state. The output nodes of the graph represent materialized views,
and they cache pre-computed values that make reads to the query blazingly fast.

Once the graph has been initialized, clients interact with Noria by sending requests to
the inputs or outputs of the dataflow graph (Fig. 2-1). Writes to Noria are first persisted
to a base table, then injected into an input node of the graph. The input node then for-
wards the write message to downstream operators along graph edges until the message is
materialized in an output node. While the write is still flowing through the graph, reads
to the materialized view return a cached, potentially stale, value. Once the write has fully
propagated through the graph, the reads will return an updated value.

When a node receives a message, it produces an output message as a deterministic
function of the input message and any state in the node. The function also determines which
children, if any, the node sends the output message to. Output messages are necessarily the
result of an input message. Writes to Noria are batched, meaning a single message could
potentially reflect many writes to a base table.

The sharder node is a particularly interesting case of a stateless node. In general, Noria
shards a graph by replicating the graph by the system’s sharding factor. If portions of the
graph are sharded by different keys, which is often the case in more complex queries, Noria
uses a sharder node to re-route the graph. The inputs to the sharder node are replicas of the
upstream graph sharded by one key, while the outputs of the sharder node are replicas of
the downstream graph sharded by another key. There are no inherent constraints on which
nodes, if any, the resulting output of a sharder node can go to. In presenting the general case
of the algorithm when losing a stateless node with multiple parents and multiple children,
we have the sharder node in mind.

15

Figure 2-1: A generic dataflow graph in Noria without sharding, where A, B, and H have
materialized state. A user injects a write to B, who forwards the message just to C. C
forwards the message to both F and H . While F filters the message and doesn’t send it to
H , H materializes the message from C. Another user reads the materialized view in the
output node H aand observes the propagated write.

2.2 Lineage-based recovery

Lineage-based recovery is a common fault tolerance technique for bulk-synchronous par-
allel (BSP) systems [31, 7]. When the lineage of a message is known before processing,
these systems can rebuild lost state from partial results [31, 12, 7]. But while BSP sys-
tems have natural barriers for resuming computation due to their synchronous model of
execution [27, 12, 18], it is unclear where continuous stream processing systems like Noria
can rebuild their state except from scratch [16]. Recomputing state can take a long time,
causing harmfully long downtimes for Noria’s latency-sensitive users.

2.3 Checkpointing

Checkpointing rolls back the system to a globally-consistent state after failure. Global
checkpointing is intuitively correct, but adds high runtime overheads due to the global
coordination required for each checkpoint [22, 21]. Distributed and asynchronous check-
pointing eliminate the need for coordination in the normal case [5, 9], but do not necessarily
guarantee exactly-once since the execution order between the time of failure and the time
of the rollback may be different. To provide stronger consistency guarantees like exactly-
once, the system must roll back its entire graph [5, 8], which has been shown to be slow at
scale [27]. Our fault tolerance solution draws from the distributed progress-tracking ideas
of distributed checkpointing, while avoiding global coordination during recovery.

16

2.4 Causal Logging
Causal logging protocols send lineage information with each message in the data plane [4,
13]. On failure, the information on surviving nodes can be used to restore the system to
a globally-consistent state. Depending on the size of lineage information, causal logging
may incur high runtime overheads. Lineage Stash removes the overhead from the data path
by asynchronously logging lineage information to a decentralized store [28]. We present
a different approach to causal logging, decreasing the size of the lineage required so that
even synchronous processing of lineage incurs little runtime overhead. Also unlike Lineage
Stash, our solution guarantees sequential consistency, i.e. messages from the same node are
processed in the same order by its children, an important property for avoiding subtle bugs
with non-determinism.

There has been much work in improving the representation of lineage to be memory-
efficient. Vector clocks, whose sizes are proportional to the number of processes in the
naive approach, have been made more efficient by only forwarding the part of the clock
that has changed [25, 10]. Lineage Stash forwards only the most recent part of the lineage
that has not been durably stored [28]. Noria potentially faces a similar memory blowup
problem with tree clocks. We solve this problem by constraining the size of tree clocks
based on which nodes in the graph are allowed to communicate with each other and the
paths the messages are allowed to take.

17

18

Chapter 3

Design

We approach the problem of knowing where and in what order to resend messages by
looking at the failure of a computer with a single stateless node (Fig. 3-6). Throughout
this section, we call this failed node B, where B has multiple parents {Ai, i ∈ [1,m]} and
multiple children {Ci, i ∈ [1, n]}.

We motivate this design by the desire to not redundantly purge and rebuild the state in
nodes on surviving machines. Consider what would happen in Fig. 3-6 if we used Noria’s
naive approach to fault tolerance. In this approach, Noria would purge all the state in B’s
children, incurring long recovery times if the nodes had to recompute a lot of state. If each
of B’s children had descendants of their own, we would have to purge their state as well.

Instead, our fault tolerance solution proposes we restart the failed node on a new ma-
chine and leave the surrounding nodes intact. Call this restarted node B′. B′ does not
initially have any state of its own, but our solution reconstructs any relevant information
in the node by using the state on surviving machines. Though we present the solution in
the context of a single stateless node, we believe this approach is important for leading us
towards a complete fault tolerance solution including stateful operators.

First, we present a data structure called tree clocks for tracking lineage, and describe
and how it is used in normal operation (§3.1.1). Next, we introduce a general recovery
protocol that uses tree clocks to calculate where (§3.2) and in what order (§3.3) to resume
sending messages. Throughout the description of the recovery protocol, we supplement
the text with an example execution. Finally, we discuss optimizations that reduce the space
overhead of tree clocks and logs for practical use (§3.4).

3.1 Normal operation

In this section, we discuss what information a node needs to track to be able to recover
the system to a globally-consistent state after failure. This recovery-related bookkeeping
involves three main components: a tree clock for accumulating the lineage of all received
messages, a diff log for storing changes in lineage, and a payload log for storing the history
of data in each outgoing message (Fig. 3-1).

19

Field Description
Tree Clock Accumulate the lineage of all received messages to remember the

last time the node heard from each upstream node.
Payload log Store the data in each outgoing message to be able to replay mes-

sages to downstream nodes from a previous point in time.
Diff log Store changes in lineage to capture the non-determinism in the order

that upstream nodes received messages.

Figure 3-1: Bookkeeping state in a node for recovery.

Figure 3-2: H’s tree clock based on the dataflow graph in Fig. 2-1, with root H and time
tH . Note that C appears in H’s tree clock twice because there are two paths a message can
take to reach H from C. The times associated with each C are different, due to either the
non-determinism with which messages arrive or due to which childrenC sent each message
to.

3.1.1 Tree clocks

A tree clock is an inverted tree of node IDs. The structure of the tree clock depends on the
root of the tree clock and the structure of the corresponding dataflow graph. Each node H
in the dataflow graph keeps a tree clock with root H and every possible path to H (Fig. 3-
2). A path in the tree clock depicts a path a message could have taken through the dataflow
graph to reach H . If there are multiple paths a message can take from a certain node, the
node appears in the tree clock multiple times.

Each node in the tree clock is associated with an integer time. This time represents a
counter of outgoing messages sent by that node. However, because a node may not send all
its messages to all its children, the counter does not necessarily determine the number of
messages received from a node. Also, because we increment the counter for each outgoing
message, we can associate each message with a unique node ID and time.

Diffs are a subset of tree clocks that represent the lineage of messages through the
dataflow graph. Sometimes referred to as provenance [11], lineage tells us the history

20

Figure 3-3: The payload log of node H , which contains all of H’s outgoing messages.
Each message has a diff with root H , where tH increases sequentially across the log. Each
message also has a data payload.

of nodes a message passes through to get to where it is. In stateless nodes, where the
outputs of messages do not depend on the results of previous messages, diffs are necessarily
linear. Since messages are processed exactly-once, the diff associated with a message is
necessarily unique.

We use the following notation to discuss tree clocks in textual form. Capital letters in-
dicate nodes in a dataflow graph, except the letter T , which indicates a tree clock. Let T be
the tree clock in Fig. 3-2. In T , H:8 refers to node H associated with time 8. Square brack-
ets indicate an unordered layer of nodes in the tree clock. The complete textual notation
for T is:

H:8 [C:7 [A:5 B:6] F :8 [C:8 D:1]].

Additionally, denote t[H,F,D] to be the time associated with D in the tree clock by taking
the path through H and F . When the path to D is unambiguous, we can abbreviate the
notation to tD. In this case, t[H,F,D] = tD = 1.

3.1.2 Payload log
The payload log is a log of all messages a node has sent. Each message contains two
parts: the diff and the payload. Consider node H’s payload log (Fig. 3-3). The diff in
each message tells receiving nodes that H sent the message and at which time. Since H
assigns times sequentially as it produces outgoing messages, the root times of the messages
also increase sequentially across the log. The payload is the actual message data that is
processed and transformed in each node. In general, the payload log is necessary to be able
to replay messages to downstream nodes from a previous point in time.

3.1.3 Diff log
The diff log is a log of the changes in lineage for each message the node has sent. The
node constructs a diff from an input message, then sends the diff with an output message.
Consider node H’s diff log (Fig. 3-4). Each diff has root H , and the root times increase
sequentially across the log in the order they were assigned. The parent node in each diff
corresponds to a parent of H in the dataflow graph.

21

Figure 3-4: The diff log of node H , which contains all diffs that H has produced. Each
diff has root H , and tH increases sequentially across the log. Light blue represents the
lineage that came from a parent, while dark blue indicates the lineage that came from H .
The parent nodes in the diffs, F and C, are parents of H in the dataflow graph.

Figure 3-5: H receives a message from C with time tC = 9. H adds a child node with
time tH +1 = 9 to the message diff, then applies the new diff to its own tree clock. H then
sends a message with the transformed payload, including the last diff in the diff log.

3.1.4 Message processing algorithm
We now present the algorithm for how a node processes an input to produce an output,
using the fields in Fig. 3-1. Initially, all times in the tree clock are 0 and all logs are empty.
When H receives a message:

1. Copy the diff in the message, whose root is a parent node, and add H to the bottom
of the diff with time tH +1, where tH is from H’s own tree clock. Store the new diff
in the diff log.

2. Apply the diff to H’s tree clock, which is an operation that takes the greater value in
corresponding entries (Fig. 3-5).

3. Process the message payload, and include a copy of the diff in the output.

22

Figure 3-6: A failed node B with multiple parents and multiple children. B has m = 3
parents A1, A2, A3 and n = 3 children C1, C2, C3. Even if B is a stateless node, we may
lose messages that were in transit to and from the node, creating non-determinism when
replaying messages on recovery. B’s children all have materialized state that would need
to be purged if using Noria’s original recovery protocol.

4. Send the output message and store the message in the payload log.

With this algorithm, if H fails, the surviving nodes have tracked enough information to be
able to restore the system to a globally-consistent state. In particular, H’s children know
which messages they received from H , where the messages came from, and in what order.
H’s parents have the payloads to replay messages right where H left off. Now all that is
required is a recovery protocol to put this information together.

3.2 Failure
In this section, we describe how the system utilizes the state on surviving nodes to restore
the failed node to a globally-consistent state. A system-wide controller is responsible for
officiating the entire recovery process. (§3.2.1). After detecting the failure, the controller
aggregates the recovery-related metadata from surviving nodes to determine where each
node should resume sending messages (§3.2.2). Finally, the restarted node must ensure its
children receive each message exactly-once (§3.2.3).

3.2.1 Controller
The controller is responsible for detecting failures and officiating the recovery protocol.
The controller detects the failure after a heartbeat timeout with a machine (Fig. 3-6). The
controller determines which node was on the failed machine and restarts it on a working
machine.

23

At this point, the controller needs to reform the network connections to and from the
restarted node B′ to integrate it back into the dataflow graph. Before it does, the controller
tells the node’s parents Ai not to send messages to B′ until recovery is finished. This pre-
vents B′ from processing messages before its state has been initialized. Once the network
connections are reformed, the controller begins the recovery protocol to determine where
each node should resume sending messages.

It is important to distinguish the use of a system-wide controller, which is only invoked
during failure, from global coordination in the normal case. Even during failure, the inter-
actions between the controller and the dataflow graph are localized to a region including
the failed node and its immediate neighbors, the neighborhood. We discuss neighborhoods
more in §3.4.1. In addition, it is easier to reason about a complex recovery protocol that is
officiated by a controller, as opposed to completely decentralized.

3.2.2 Recovery protocol
Once the controller has restarted the failed node on an existing machine and prepared the
node’s immediate neighbors to begin recovery, it begins the recovery protocol. The recov-
ery protocol involves a series of message exchanges between the controller, the restarted
node, and its immediate neighbors (Fig. 3-7):

1. Ask all Ci for their diff logs and tree clocks rooted at B (Fig. 3-7b). Let tB,min be
the minimum tB in the tree clocks. Calculate T ∗, a tree clock with root time tB,min,
by applying all diffs up to and including tB,min to a tree clock rooted at B′ initialized
with all zeros.

2. Tell B′ to resume sending messages to each Ci at 1 +B’s time in the clock from Ci,
respectively (Fig. 3-7c). Include T ∗ for B′ to initialize its tree clock. Wait for an ack.

3. Tell each Ai to resume sending messages to B′ at 1 + Ai‘s time in T ∗ (Fig. 3-7c).

During the recovery protocol, the controller rolls back the recovery-related state inB′ to
a previously-consistent state of B without having to rollback downstream nodes. Note that
T ∗ is not necessarily a state that B’s tree clock was actually in, since we only require B′’s
recovered state to encapsulate the causal effects of the messages received by its children.
The time tB,min represents the latest time that Ci is guaranteed to have received a message
from B′, if it should have received the message already. Also, the ack in step 2 is necessary
to ensure that B′ has already initialized its state with T ∗ before it receives any messages
from A.

The controller might ask B′ to resume sending messages that it had already sent before
failure. However, B′ just started up and has an empty payload log. As a result, it is unable
to immediately resume sending messages to its children until it receives messages from
its parents. If B′ only has one parent, the order it receives messages is deterministic, and
its computation is also deterministic. Analogously, if B′ only has one child, the order it
processes messages in does not matter since its child has not observed an ordering yet.
However, if B′ has multiple parents and multiple children, its children are able to observe
a different interleaving of messages processed from the node’s parents. Thus we require an

24

(a) B’s diff log from before the failure. Some of these messages are still in transit when the failure
occurs (Fig. 3-6). The nodes underneath each diff indicate which children the message with that diff
was sent to.

(b) In Step 1, each Ci sends its diffs and tree clock with root B to the controller. tB,min = 1 is the
minimum tB across all clocks. T ∗ is the result of applying diffs where tB ≤ tB,min to a tree clock
with all zeros. The only such tB is 1, so T ∗ = B:1 [A1:1 A2:0 A3:0].

(c) In Step 2, B′ resumes sending to C1 at 2, C2 at 2, and C3 at 7. B′ sets its tree clock to T ∗. In
Step 3, A1 uses T ∗ to resume sending to B′ at 2. A2 at 1. A3 at 1.

Figure 3-7: The recovery protocol officiated by the controller once it has restarted the failed
node, B, on an existing machine as B′. A and C remain intact after the failure, including
the materialized state in C. The diagram continues from the failure in Fig. 3-6.

25

Invalid Execution from Processing Messages in the Received Order

Input Output Children Valid?
A3:1 B′:2 C1 Yes.
A1:2 B′:3 C2 Yes.
A2:1 B′:4 C1 Yes.
A1:3 B′:5 C3 Yes, not sent to C3 based on deduplication mechanism.
A3:2 B′:6 C2 No, inconsistent withB:6 [A2:2] already received by its

sibling C3.
A2:2 B′:7 C1, C3 No, C3 already received the same message with a dif-

ferent diff B:6 [A2:2].

Figure 3-8: An invalid execution as the result of processing messages in the order they were
received. The input column in the table reflects the order. The diagram continues from the
failure in Fig. 3-6 and the recovery state machine in Fig. 3-7.

additional algorithm to ensure that the messages B′ sends are consistent with those already
received by its children (§3.3).

3.2.3 Deduplication

The restarted node needs to ensure that it does not send a message to a child that already
received the message before the failure. To deduplicate messages, B′ keeps a map from
each child node ID to the minimum time it is okay to send to that child. By default, the
minimum time is 0, but on recovery and until the next failure, B′ sets the minimum time
for each node to where it was told to resume sending messages to that node. Once B′ has
generated a message with a certain time, it checks for duplicates based on this map. Thus
each Ci receives messages from the new B′ right where the old B left off.

Alternatively, the receiving node Ci can deduplicate messages by discarding a message
from B if tB is not strictly greater than the root time of the previous message from B. This
is more similar to the deduplication mechanism of other dataflow systems [2, 29]. However,
we chose to deduplicate on the sending side because it requires one more read per message
sent, rather than one more write per message received.

3.3 Ensuring a valid execution order
In addition to deciding where to resume sending messages, the system also needs to decide
what order to process messages in to ensure the same interleaving of received messages as
before the failure (Fig. 3-8). The order is important to ensure that downstream nodes, who
may have states that depend on the input order, are consistent with each other. In this case,
the restarted node rather than the controller decides the order based on an execution replay
(ER) algorithm, since the processing order depends on the which messages were actually
received. As discussed in §3.2.2, this section only applies to nodes with multiple parents

26

Figure 3-9: Partially completed table used to determine a valid execution replay. The first
message that B′ sends is B′:(tmin + 1) [A1:tA1], followed by B′:(tmin + 2) [A2:tA2]. The
Ci markers at the bottom of the table indicate that all messages left of that marker should
have already been received by Ci or will never be sent to the node at all.

and multiple children.
The high-level goal of the execution replay is to resend all messages between tB,min and

tB,max, since these messages have already been observed by some ofB′’s children, but have
yet to reach some of its other children. In order to resend these messages, the execution
replay algorithm needs to figure out which upstream Ai each message came from, and how
to send messages where this information is undetermined.

The post-recovery execution must reflect the ordering of diffs encapsulated in the diff
logs of the restarted node’s children. Each diff log describes a subset of messages that came
from the failed node. The controller collects this information from each child and sends
part of it to the restarted node. Let tB,max be the maximum tB in the tree clocks received
from Ci in Step 1 of the recovery protocol (§3.2.2). The controller sends the diffs with root
B where tB,min < tB ≤ tB,max. It is up to B′ to determine what order to send them in
once it has received the diffs. We call these target diffs because the restarted node must
try to replay these exact diffs on recovery, while potentially sending different messages in
between.

3.3.1 Execution replay table
We aid the process of determining an order to process received messages with the execution
replay table (Fig. 3-9). A completed table defines what order B′ should process messages
in until it can return to normal operation.

We describe each aspect of the ER table and what it means in the context of replaying
messages in order. The ER table belongs to the restarted nodeB′. Each column corresponds
to a message with time tB′ thatB′ must replay, while each row corresponds to a parent node
that B′ might have received a message from. The integer entry in each column combined
with the parent for that row correspond to the input message used to produce the output

27

Figure 3-10: Empty ER table for the restarted node in Fig. 3-6. There is a column for each
undetermined output message from tmin + 1 = 2 to tmax = 6. There is a row for each
parent A1, A2, and A3. There is a marker for each child C1, C2, and C3 on where B′ was
told to resume sending messages in Fig. 3-7c.

message with time tB′ . Together, an entry tA in row A column tB means that B will send a
message with diff B:tB [A:tA]. In addition, the markers at the bottom of the table indicate
where B was told to resume sending messages to each child. The child Ci will only receive
messages replayed after the time of the marker. To represent a valid execution, the solved
ER table must fulfill several constraints:

• Monotonicity constraint: The entries in each row are in strictly increasing order.

• Regularity constraint: Each column has at most one entry, and columns that corre-
spond to a target must have the matching entry.

• Eventuality constraint: If a message would be sent to Ci, the entry goes after the
marker for Ci. If an entry is filtered, it may be discarded.

These constraints correspond to our correctness goals in §1.1. The Monotonicity and Reg-
ularity constraints ensure that updates are processed exactly-once and in the order they
are sent by each parent. The Eventuality constraint ensures that each update is eventually
processed, and thus the views are eventually-consistent.

The restarted node uses the diffs received from the controller to initialize the ER table
(Fig. 3-10). ForB′ each row is one of its parentsA1,A2, andA3. Each column is a message
that B needs to send from starting from tB,min + 1, one more than the root time of its tree
clock, to tB,max, the root time of the last target diff. Finally, B′ uses the information from
where it was told to resume sending messages to each child to create the markers at the
bottom of the table.

3.3.2 Solving the ER table
We must first collect the set of messages we can use to solve the ER table. Since the
ultimate goal is to replay the target diffs, B′ collects incoming messages in a buffer until it

28

Algebraic Approach to Solving the ER Table

Input Children Monotonicity Regularity Eventuality Result
A3:1 C1 t ≥ 2 t 6= 5, 6 t ≥ 2 No upper bound.
A1:2 C2 2 ≤ t ≤ 5 t 6= 5, 6 t ≥ 2 t ∈ {2, 3, 4}
A2:1 C1 2 ≤ t ≤ 6 t 6= 5, 6 t ≥ 2 t ∈ {2, 3, 4}
A1:3 C3 t = 5 t = 5
A3:2 C2 t > tA3:1 t 6= 5, 6 t ≥ 2 No upper bound.
A2:2 C1, C3 t = 6 t = 6

(a) Algebraic inequalities based on the Eventuality, Monotonicity, and Regularity constraints.

(b) Complete ER table.

Figure 3-11: Algebraic constraints on where each message can go in the table based on
the received messages in Fig. 3-8 (Fig. 3-11). This diagram continues from the failure in
Fig. 3-6. One valid solution to the table is to send B′:2 [A2:1] then B′:3 [A1:2] (Fig. 3-11b).
However, any of the six solutions where A2:1 and A1:2 are placed in two different columns
of B′:2, B′:3, and B′:4 are valid. The targets are the diffs where tB,min < tB ≤ tB,max,
in this case the diffs for B:5 and B:6, which were observed by C3 but not its siblings.
Messages that correspond to a target can only be placed in one position in the table.

29

has a message that corresponds to each target. A message corresponds to a target if its diff
is the same as the target. B′ then uses the buffered messages to fill out the ER table.

Any solution that satisfies the three constraints is sufficient, and there may be multiple
possible solutions. There are also many different ways to find a solution to the constraint
problem. At a high level, our method involves bounding the set of possible columns for
each message based on the constraints, then narrowing down the space of solutions with a
set of heuristics:

1. Place each message that corresponds to a target in the table.

2. Algebraically constrain where each message can go in the table based on the three
table constraints (Fig. 3-11a). If there is no maximum bound, hold the message for
later.

3. Place the remaining constrained messages in the table by brute-forcing every solution
that satisfies the constraints (Fig. 3-11b).

In practice, we hope for the space of possible solutions to be relatively large, and for
at least one solution to be easy to find. There must be at least one possible solution to the
table, which is the execution of messages from before the failure. We can also optimize
the brute-force checker using heuristics. For example, we can place messages with fewer
possible solutions before placing others, or place messages in the order they were received
as far left as possible. In a sense, solving the ER table is like a constrained topological sort.

3.3.3 Using the ER table to replay messages

The restarted node processes the messages in order from left to right in the completed ER
table. Note that currently,B′’s tree clock is equal to T ∗, which has root time tB,min (§3.2.2).
Thus based on the message processing algorithm in §3.1.4, the next message that B′ sends
will have time tB′ = tB,min + 1. This is also the first entry in the execution replay table.

If the column has an entry, sending the message is straightforward. Let tAi
be the entry

in row Ai column B′:tB′ . Then B′ removes the input Ai:tAi
from its buffered messages,

processes it, and sends the output with diff B′:tB′ [Ai:tAi
].

If the column is empty however, either there is a message we have no information
about, or the message does not have an upper bound in the table. Regardless, B′ pretends
this space corresponds to a filtered message, generates a dummy message with that time to
place in the payload log, and does not forward the message to anyone.

Once B′ has reached tB,max, the last message that a child had seen before the failure,
recovery is complete and B′ can send the remainder of its buffered messages as if they had
just arrived. Note that the order that B′ replays messages can easily be different B’s orig-
inal order (Fig. 3-12). However, the new order encapsulates the causal effects of previous
messages that surviving nodes have observed.

30

Figure 3-12: B′’s diff log after recovery based on the completed execution replay table
in Fig. 3-11b. The order differs from B’s pre-failure order (Fig. 3-7a), but it is still valid
because it is consistent with what its children have seen. In particular, it replays the mes-
sages with tB = 5, 6, and otherwise meets the constraints specified by the execution replay
table. Note that B′ sends a dummy message for tB′ = 4 because there is no entry for the
corresponding column in the table.

Figure 3-13: The apply diff operation from Fig. 3-5 with tree clocks of bounded size. The
node’s tree clock is bounded to depth three, while diffs are bounded to depth two before
they are send with an output message.

3.4 Optimizations

3.4.1 Neighborhoods
As described, the sizes of tree clocks sent and stored in the system are bounded only by the
size of the dataflow graph. Instead, we can bound them by the size of a neighborhood, a
subgraph that includes a node and its immediate neighbors.

Note that in the recovery algorithm, the controller only communicates with the failed
node and its neighborhood. In addition, the only nodes used in the state received from Ci

are the nodes in the neighborhood. Thus in the tree clock algorithm in §3.1.1, we truncate
each node’s tree clock to depth 3 (Fig. 3-13). We also truncate diffs to depth 2 before
sending them with a message.

A key insight to the practicality of tree clocks is that the diff is a constant-size data

31

structure. Even as the the graph scales out due to sharding, the diff remains linear, truncated
to the depth of a neighborhood. This insight is particularly important because even though
diffs are synchronously processed with every message in the system, we are able to keep
the additional work small.

3.4.2 Log truncation
Unbounded logs are impractical without infinite storage. To decide where to truncate each
log, let f(N) be the minimum time of IDN in the tree clocks across all nodes. A minimum
bound for this value is calculated incrementally in the regular heartbeats that already exist
for determining worker liveness.

Truncate the payload log of node N up to and including f(N). Nodes downstream of
N will have already received messages at least up to f(N), so N will never be asked to
send payloads less than f(N) in the event of a failure.

Truncate the diff log of node N with parents M1, · · · ,Mm up to but not including the
first diff Mi:m where m 6≤ f(Mi). Siblings of N will have already received messages at
least up to the truncated diff, so N will never be asked to synchronize the truncated diffs.
In addition, we must do log compaction on the diff log by applying truncated diffs to a base
tree clock called the min clock. If we call the node’s existing tree clock a max clock, then
the two clocks and the diff log satisfy the following property:

min clock + diffs = max clock.

Diff log truncation affects Step 1 in §3.2.2, which assumes each node keeps a single
tree clock. Instead, in Step 1, request both the min and max clocks from all Ci. Also,
initialize T ∗ by applying all min clocks to each other, then apply diffs up to and including
tmin. Another observation is that only children of multi-child multi-parent nodes need to
keep a diff log at all, since as §3.2.2 describes, only failures of these types of nodes require
an execution replay.

Sometimes, a node may have a very stale view of an ancestor N , preventing f(N) from
being updated. For example, this may happen if N sends along an outgoing edge very
infrequently, or if a data dependency prevents N from sending along specific edges at all.
Therefore, we need some mechanism that recognizes when N has not updated its values
along an edge within a certain time threshold, and periodically causes N to do so. This
thesis does not provide a specific mechanism, but one possible solution would be for N to
track this information itself.

32

Chapter 4

Implementation

We implement a prototype of tree clocks and the tree clock recovery protocol on Noria
written in 4k lines of Rust.

TreeClock is a recursive data structure of node IDs and times, with edges to other
TreeClocks (Fig. 4-3). In the implementation, a node in a tree clock is a single-threaded
connected subgraph of dataflow nodes. The abstraction still holds because messages are
serialized at the inputs and outputs, and computation is deterministic. A sharded subgraph
is considered to be many distinct nodes, each with its own ID. Diff s are a subset of linear
tree clocks, so we alias the type with the TreeClock data structure.

Each node keeps additional fields for recovery-related bookkeeping (Fig. 4-2). min time
and payloads are used as a payload log with log truncation. store diffs, min clock, max clock,
and diffs are used as a diff log with log compaction and an option to not store diffs at
all. do not send prevents Ai nodes from sending to B′ before recovery is complete, while
min time to send preventsB′ from sending duplicates to its children. targets and buffer are
used in the execution replay.

The recovery protocol is implemented as a series of message exchanges between the
controller, the failed node, and its immediate neighbors. The RequestClocks message cor-
responds to Step 1 in the recovery protocol (§3.2), where the controller asks Ci for their
diffs and tree clock rooted at a node ID. The ResumeAt message corresponds to Steps 2
and 3, where the controller may also include T ∗ and a list of target diffs for B′ to use in
recovery.

1 struct TreeClock {
2 root: NodeID,
3 time: usize,
4 edges: HashMap<NodeID, Box<TreeClock>>,
5 }
6

7 type Diff = TreeClock;

Figure 4-1: The clock data structures in the implementation. The Diff type is aliased as a
TreeClock because it is a subset of linear tree clocks.

33

Field Rust Type Section Purpose
payloads Vec<Box<Packet >> §3.1.2 Payload log.
min time usize §3.4.2 Payload log truncation.
diffs Vec<Diff> §3.1.3 Diff log.
max clock TreeClock §3.1.1 Primary tree clock.
min clock TreeClock §3.4.2 Diff log compaction.
store diffs bool §3.2.2 Option to not store diffs at all.
do not send HashSet<NodeID> §3.2.1 Prevent parents from sending to

restarted node until recovery is
complete.

min time to send HashMap<NodeID,
usize>

§3.2.3 Deduplication.

targets Vec<Diff> §3.3 Target diffs.
buffer HashMap<NodeID,

Vec<(usize,
Box<Packet>)>>

§3.3.2 Buffer messages for solving the
ER table.

Figure 4-2: Recovery-related bookkeeping for each node in the implementation.

1 enum Packet {
2 // Request the diffs and tree clocked rooted at the
3 // given node ID, which is the ID of a parent node
4 RequestClocks(NodeID),
5

6 // Notify the domain where to resume sending
7 // messages to its children
8 ResumeAt {
9 id_times: Vec<(NodeID, usize)>,

10 min_clock: Option<TreeClock>,
11 targets: Vec<Diff>,
12 },
13 }

Figure 4-3: The messages exchanged in the recovery protocol (§3.2.2), in the implementa-
tion. RequestClocks is used in Step 1 of the recovery protocol, while ResumeAt is used in
Steps 2 and 3.

34

Chapter 5

Evaluation

The message processing algorithm requires additional computation at each node crossing
to update clock times. There is also computation involved in managing and truncating the
logs. We want to analyze how the algorithm affects performance in the normal case and
recovery time in the failure case by answering the following questions:

1. How do tree clocks affect the staleness of reads? (§5.2)

2. How do tree clocks affect read and write latency? (§5.3)

3. How does the recovery time compare to original Noria? (§5.4)

5.1 Benchmarking methodology

5.1.1 Dataflow graphs
We use a query based on the Lobsters news aggregator from the original Noria pa-

per [16] in our performance benchmarks (Fig. 5-1). The resulting dataflow graph consists
of a stateless sharder node with multiple stateful parents sharded by article ID and multiple
stateful children sharded by author ID (Fig. 5-2). Given an input message, the sharder node
can send a message to any number of its children in the graph.

During setup, the load generator prepopulates the Article base table with a variable
number of articles, uniformly assigned to one of 400 authors. During the benchmark, the
load generator queues writes to Vote and reads to AuthorWithVoteCount according to a
target load. Writes are keyed by a random article ID while reads are keyed by a random
author ID.

We measure write propagation time using a reserved article ID and author ID key.
Writes to the reserved key are only performed when we want to get a data point for write
propagation time, and this key is not included in the random article ID generator. Imme-
diately after sending the write, we perform reads for the corresponding author ID of the
reserved key until the vote count has gone up, indicating the write has propagated. The
granularity with which we can measure propagation time is the same as the batch interval
with which we execute queued requests.

35

1 # base tables
2 CREATE TABLE Article
3 (id int, title varchar(255), author_id int, PRIMARY KEY(id));
4 CREATE TABLE Vote (article_id int, user int);
5

6 # read queries
7 CREATE VIEW VoteCount AS
8 SELECT Vote.article_id, COUNT(user) AS votes
9 FROM Vote

10 GROUP BY Vote.article_id;
11 CREATE VIEW ArticleWithVC AS
12 SELECT Article.id, author_id, VoteCount.votes AS votes
13 FROM Article
14 LEFT JOIN VoteCount
15 ON (Article.id = VoteCount.article_id)
16 WHERE Article.id = ?;
17 QUERY AuthorWithVC: SELECT author_id, SUM(votes) as votes
18 FROM ArticleWithVC
19 WHERE author_id = ?
20 GROUP BY author_id;

Figure 5-1: The SQL tables and queries used in the benchmark. In a news aggregator, we
have a table of articles, and a table of votes for the articles. The VoteCount query tallies
the votes by article ID, and the ArticleWithVC query combines this tally with the author
of the article. The AuthorWithVC query is interested in the number of votes an author has
received across all the articles written by that author, which can be computed as a result of
the ArticleWithVC query.

36

Figure 5-2: The sharded dataflow graph defined by the SQL in Fig. 5-1. The inputs to the
sharder node are a graph sharded by article ID, and the outputs of the sharder node are a
graph sharded by author ID. During the benchmark, we send writes to Vote and reads to
AuthorWithVC.

We use the following default parameters, unless otherwise stated. We deploy a 20-way
sharded graph, meaning the sharder node has 20 parents and 20 children, and prepopulate
the base tables with 1 million articles. The load generator uses a write-heavy workload of
50% reads and 50% writes at 10000 ops/s. Writes are batched only at the input node with
a batch interval of 1000µs. Each data point is collected over a 30 second trial.

5.1.2 Hardware

All experiments run on a machine with 40 CPUs. It is impractical to run a deployment with
more than 20 shards since the performance gains of sharding rely on having enough cores to
properly parallelize computation. Also, the machine has 62.8GB of memory, which places
a limit on the amount of state we can accumulate in the table for the benchmark. Although
we did not have the resources to do so for this thesis, we plan on exploring larger sharding
factors and larger state sizes in future work by deploying Noria across multiple machines.

5.2 Read staleness

We quantify the runtime overhead of tree clocks by measuring the time it takes writes to
propagate through the graph. Noria clients observe write propagation time as the staleness
of a read. Since the bookkeeping of tree clocks is proportional to the number of node cross-

37

0 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
0

5

10

Offered Load (ops/s)

W
ri

te
Pr

op
.T

im
e

(m
s) Tree Clocks

TC (no-copy)
Original

Figure 5-3: Offered load versus write propagation time. At 1.2 million ops/s with 4ms of
write propagation time, the overhead of tree clocks is 37% with the copy and 8% without.
At 3.0 million ops/s the overhead of tree clocks without copy is 28%. In absolute numbers,
the difference in write propagation time at 3.0 million ops/s is 1.5ms.

ings, write propagation time measures the compounded overhead as writes flow completely
through the graph.

A substantial amount of overhead comes not from the bookkeeping associated with tree
clocks, but from copying the message into the payload log, which we address in the next
paragraph. Near the maximum load of 1.2 million ops/s with 4ms of write propagation
time, the overhead of tree clocks is 37% with the copy and 8% without (Fig. 5.2). At 3.0
million ops/s the overhead of tree clocks without copy is 28%. In absolute numbers, the
difference in write propagation time at 3.0 million ops/s is 1.5ms.

Tree clocks no-copy. As discussed, a substantial amount of overhead comes not from the
bookkeeping associated with tree clocks, but from copying the message into the payload
log. Since messages are batched, as the offered load increases, the total number of messages
in the system does not change, but the size of the message payload increases (Fig. 5-4).

However, this problem is not fundamental to tree clocks, as the diff size stays constant
regardless of the offered load (Fig. 5-4). We will address the problem in future work by
tracking a reference to the payload instead of copying it. For benchmarking purposes, we
collect data on two versions of Noria with tree clocks: one that copies the payload into the
log, and another that omits the payload but still manages logs.

In addition, offered loads beyond the saturation point of tree clocks with-copy do not
reflect a practical Noria deployment. At the saturation point of 1.5 million ops/s, at least
half the messages are sent to every shard because the payload is so large (Fig. 5-5). A
load this high does not effectively exploit the parallelism of sharding, and in a practical
deployment we would increase the number of shards and distribute them over multiple
machines.

38

0 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
0

200

400

600

800

1,000

Offered Load (ops/s)

Si
ze

(b
yt

es
)

Payload
Diff

Figure 5-4: Offered load versus the median size of message components leaving the sharder
node. The size of the payload increases in steps for each additional row of data in the
median message, while the size of the diff remains constant. Since we currently copy
the entire payload into the payload log, this results in significant overhead as the sizes of
messages increase. However, we believe this is an implementation detail that can be solved
by tracking a reference to the payload instead of copying it.

0 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
0

5

10

15

20

Offered Load (ops/s)

N
um

be
ro

fS
ha

rd
s

Figure 5-5: Offered load versus the median number of shards a sharder splits an outgoing
message into in a 20-way sharded graph. These results indicate that the system is fully
saturated at about 1.5M ops/s, where the sharder sends a message to every shard. At this
point, in a practical deployment we would increase the number of shards to fully exploit the
parallelism of multiple cores. We may also need to distribute the computation over more
machines to attain more cores.

39

0 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
0

5

10

Offered Load (ops/s)

R
ea

d
L

at
en

cy
(m

s) Tree Clocks
TC (no-copy)
Original

Figure 5-6: Offered load versus the time it takes for a read to return a cached value. There
is no significant difference with or without tree clocks.

0 0.5M 1.0M 1.5M 2.0M 2.5M 3.0M
0

5

10

Offered Load (ops/s)

W
ri

te
L

at
en

cy
(µ

s) Tree Clocks
TC (no-copy)
Original

Figure 5-7: Offered load versus the time it takes to inject a write into the dataflow. The
write latency of tree clocks is greater than that of tree clocks no-copy, which is greater
than that of original Noria. At 2.4 million ops/s, the overhead of TC no-copy is about 0.5
milliseconds.

5.3 Read and write latency

We measure read latency as the time it takes for a read to return a value (Fig. 5-6). Read
latency remains the same with tree clocks, since Noria can immediately return a cached
value even if writes have not fully propagated through the graph.

We measure write latency as the time it takes the first node in the dataflow graph to
process and send the write message, then return a response (Fig. 5-7). We define write
latency this way because writes are acked they moment they become durable, which is
when they enter the graph. Unlike write propagation time, write latency does not depend
on the depth of the graph, and the value reflects the overhead of a single node crossing. At
this level, message diffs are also smaller because the first node does not have parents. The
overhead of tree clocks remains relatively low, but increases proportionally to the offered
load for reasons we will investigate in future work. Near the maximum load of 2.4 million
ops/s, the overhead of write latency is about 0.5 milliseconds.

40

10 15 20 25 30 35 40 45 50 55 60

0

20

40

Duration (s)

W
ri

te
Pr

op
.T

im
e

(m
s) Failure

Detected
Recovered

(a) Neighborhood recovery algorithm; detected=19.223s, recovered=19.372s.

10 15 20 25 30 35 40 45 50 55 60

0

20

40

Duration (s)

W
ri

te
Pr

op
.T

im
e

(m
s) Failure

Detected
Recovered

(b) Original recovery algorithm; detected=19.275s, recovered=56.425s.

Figure 5-8: Write propagation over time for each recovery protocol with 50 million articles.
The failure occurs at 15s, and the controller detects the failure a few seconds later after a
heartbeat timeout. The difference between recovery and detection time in the neighborhood
recovery algorithm is almost negligible. In comparison, recovery in the original Noria is
more than 30 seconds.

5.4 Recovery time

We measure recovery time by killing one of the nodes in the benchmark and measuring
the time it takes for the system to return to normal operation. To do so, we probe the
write propagation time every 250ms, where an abnormally large time indicates the graph
is disconnected and writes are unable to propagate (Fig. 5-8). The recovery time does not
include the time it takes to detect the failure, which is independent of the recovery protocol.

The system is considered to be in normal operation once the write propagation time
reaches pre-failure levels again. This is a conservative approach in tree clocks, here one
might also consider the system to be recovered as long as the graph is fully-connected, but
still handling a backlog of writes from when the node was offline.

In the original recovery algorithm, reads become unavailable while the system is still

41

1M 10M 50M
0

10

20

30

40

50

0.13 0.17 0.150.7

7.92

43.08

R
ec

ov
er

y
Ti

m
e(

s)

Tree Clocks Original

Figure 5-9: Number of articles versus recovery time as the median of 11 trials. The error
bars show the recovery times at the first and third quartiles. The recovery time for tree
clocks is constant in relation to the number of articles. In comparison, the recovery time
in the original Noria is proportional to the number of articles. For example 10M articles
at 7.92s is about 10x the recovery time for 1M articles at 0.7s. Similarly, 50M articles at
43.08s is about 60x.

recovering. This is because the original protocol drops and restarts the reader node, which
has to rebuild its entire state (without partial materialization) until it can respond to read
requests again. However, this as an implementation detail, since Noria could theoretically
keep the old reader node around to return stale values until the new reader node is ready to
respond to requests.

In the tree clock recovery algorithm, reads return stale values, but stay available through-
out the failure. This is because the only node that tree clock recovery restarts is the failed
node. The client handle to the view stays the same, and the reader can continue to re-
spond with stale values until recovery is completed. It is important to note that both reads
and writes remain online throughout the duration of the failure, a vital property for web
applications where availability is key.

We compare the recovery times from losing the sharder node, which would require re-
processing all rows in the Article base table if rebuilding state (Fig. 5-9). The recovery
times are collected as the median over 11 trials. With 50 million articles, tree clock recovery
took 0.15s, a 290x improvement from the original Noria, which took 43.08s. Note that
0.15s is below the 250ms granularity with which we measure write propagation time, but
is sufficient to demonstrate the advantages of tree clocks. We did not collect data beyond
50 million articles since we approached the memory limits of our machine, but we expect
real Noria deployments to use multiple machines to store their base tables.

42

The key takeaway about recovery time is not the large multiplicative factor, which does
not carry much meaning in itself, but that we have eliminated the dependence of recovery
time on the amount of state in the system. As systems accumulate more data over time,
rebuilding state in the original Noria can only take longer than 43.08s. In comparison,
the recovery time using tree clock recovery is independent of the number of articles in the
system and remains constant.

43

44

Chapter 6

Correctness

Noria is eventually-consistent and exactly-once. We describe the state of the system after
recovery to be correct if it is a state it could have reached had no failure happened at all.
In particular, we must resolve the non-deterministic order that the recovered node receives
messages to be consistent with the order observed by its surviving downstream nodes. The
state we consider includes: the min and max clock, the payload log, and the diff log.

First, we introduce a model for describing a node’s execution. We then constrain the
model with a set of invariants to describe only valid executions. Next, we prove that the
recovery algorithm re-creates an execution where these constraints still hold despite a fail-
ure. Finally, we prove that the recovery-related bookkeeping in the system will eventually
be ready to handle the failure of another node.

6.1 Invariants
Definition 1. Given a series of inputs to a node [IN1, IN2, IN3, . . .], we can model the
execution of the node as a deterministic state machine:

state0 = EMPTY
statei = f(INi, statei−1)
g(INi, statei) = OUTi

h(OUTi) = childreni,

where f, g, h are deterministic functions. In stateless nodes, statei = state0 for all i.

The crux of the recovery algorithm is determining which inputs B′ and Ci should re-
ceive next, and in what order. In particular, B′’s inputs determine B′’s outputs, and sub-
sequently Ci’s inputs. The execution would trivially be valid if post-recovery, B′ and Ci

received the exact same inputs as the ones they would have received pre-failure. However,
we relax this solution by allowing any valid execution that reflects the causal effects of
previous messages, which is an execution that satisfies:

• Monotonicity Invariant: Inputs from a parent A are received in strictly increasing,
though not necessarily sequential, order.

45

• Regularity Invariant: If two nodes receive inputs with diffs A:tA [DIFFi] and
A:tA [DIFFj], respectively, then DIFFi = DIFFj .

• Eventuality Invariant: If B ∈ h(OUT) for some output of A, then B should even-
tually receive and process that output as an input.

These invariants follow from the definition of the message processing algorithm and how
nodes generate a diff to send with each message (§3.1.4). Additionally, messages are sent
over reliable, ordered TCP streams.

6.2 Proof: the recovery protocol produces a valid execu-
tion order.

Consider the general case of a failed nodeB withm parents {Ai, i ∈ [1,m]} and n children
{Ci, i ∈ [1, n]}, without log truncation. The recovery protocol restarts the failed node on
a new computer as B′. We will prove that the recovery algorithm re-creates an execution
where the invariants still hold despite a failure.

6.2.1 Each Ci’s inputs reflect a valid execution after recovery.
We make the important assumption that B′’s post-recovery outputs reflect a valid series of
inputs from its parents, which we prove in §6.2.3. In this proof, we focus exclusively on
the relationship between Ci and its immediate neighbors.

Lemma 2. The invariants hold in C’s post-recovery execution when C is B’s only child
and B is C’s only parent.

Assume C is B’s only child and B is C’s only parent. Let B:tB be the last input C
received from B. Then C has a diff in the diff log of the form C:tC [B:tB]. If C is supposed
to receive any messages B′:tB′ from the restarted node where tB′ ≤ tB, it would have
already received them due to Monotonicity. Thus C needs to receive messages from B′

where tB′ > tB.
B′’s max clock is the result of all of C’s diffs with root B applied to B′’s min clock

(§3.2.2). (Without log truncation, the min clock is all zeros.) Thus tB′ in the max clock is
the greatest time corresponding to B in C’s diff log⇒ tB. B′ resumes sending messages
to C at 1 more than tB′ in B′’s max clock⇒ tB + 1. Thus Monotonicity holds.

It follows that C will eventually receive any messages B′:tB′ where tB′ > tB since this
is equivalent to tB′ ≥ tB + 1. Thus Eventuality holds.

B′ does not have other children, so no other nodes can receive an input from B′ with
the same time. Thus Regularity also holds.

Corollary 3. WLOG, the invariants hold in Ci’s post-recovery execution where B has
any number of children {Ci, i ∈ [1,m]}, but B is Ci’s only parent.

Assume B′ started generating messages at tB′ < tB + 1 instead of at tB + 1, but B′

knows that Ci should only receive outputs OUTt where t ≥ tB + 1. Then when generating

46

OUTtB′ , even if Ci ∈ h(OUTtB′), B′ will not send the message to Ci due to B′’s dedu-
plication mechanism (§3.2.3). Thus the time B′ resumes sending message to each Ci is a
maximum bound on when B′ can start generating messages while satisfying Eventuality.
The minimum maximum bound is tB,min + 1, as in the algorithm (§3.2.2).

Now, assuming WLOG Ci has multiple parents including B, Ci receives messages in
strictly increasing order from each parent. From the perspective of Ci’s children, the order-
ing of these messages has not been decided yet, thus any interleaving is valid. It follows
from Lemma 2 and Corollary 3 that Ci’s post-recovery execution is valid.

6.2.2 B′’s inputs reflect a valid execution after recovery.

During the execution replay, B′ decides on an ordering of its inputs (§3.3). We define the
inputs to reflect a valid execution if they contain all the messages required to be ordered as
a valid execution.

Lemma 4. T ∗ is the value ofB’s max clock in some valid execution. That is, an execution
that reflects the causal effects of previous messages.

We obtain T ∗ by applying all diffs up to and including tB,min to a tree clock with all
zeros (§3.2.2). If this includes all diffs from 1 to tB,min, then T ∗ is trivially a max clock.
However, it is possible that we do not apply some diff B:t∗B. This would occur if no child
Ci received a message from B with time t∗B < tB,min. However, each child has received
some message from B with time tB ≥ tB,min or tB,min would not be the minimum across
all max clocks. Thus the message with time t∗B was not sent to any children, or it would
have already been received due to Monotonicity.

The valid execution that this max clock reflects is one in which all diffs that have been
received by some Ci are in B′’s diff log. Since B′ is stateless, regardless of when B′ sends
the message t∗B′ = t∗B, the message will deterministically not be sent to any children and
Ci’s inputs are not affected. Thus in this execution, the filtered messages may or may not
have been sent already.

Given T ∗ as B′’s max clock, we will prove that each Ai sends the messages required for
B′ to order them as a valid execution. Let t∗Ai

be the time in T ∗ for some parent Ai. Then
B′ has already “received“ all messages tAi

from Ai where tAi
≤ t∗Ai

due to Monotonicity.
Ai resuming sending all messages tAi

> t∗Ai
(§3.2.2), which is equivalent to resuming at

t∗Ai
+ 1. Additionally, we can assume that Ai’s post-recovery outputs are valid since they

are either the pre-failure outputs stored in the payload log, or were just generated.
Each Ai sends all messages to B′ that have not yet been applied to B′’s max clock,

as long as B′ ∈ h(OUT). This includes messages that B′ received before the failure but
filtered to its children. Since the execution replay algorithm (§3.3) allows discarding filtered
messages, B′ can theoretically recreate the same order of inputs as before the failure.

47

6.2.3 B′’s outputs determine valid inputs to each Ci after recovery.
The proof in §6.2.1 depended on this vital assumption. While §6.2.2 guarantees that we
have the messages to potentially regenerate a valid execution, this section proves we have
sufficient information to constrain the actual ordering.

Lemma 5. The execution replay constraints in §3.3 each guarantee an invariant in §6.1.
Regularity holds if B′ can buffer a message corresponding to each target. B′ must

eventually receive the corresponding input because the inputs received from a parent are
deterministic, in strictly increasing order, and will eventually arrive.

Eventuality holds if B′ can place every received message, except filtered messages, in
the ER table to be sent to its intended children. Let tB be the root time of the last target
provided by Ci. This time is equivalent to the marker for Ci in the ER table (Fig. 3-9). If
there exists some output OUT placed at a time t ≤ tB, where Ci ∈ h(OUT), then B′ would
filter the message to Ci as a duplicate (§3.2.3). Thus t must be placed at a time t > tB, a
minimum bound for Ci to eventually receive the message.

Monotonicity holds if B′ places an input Ai:tAi
in row Ai, where tAi

satisfies Mono-
tonicity relative to the other entries in that row. This is a maximum bound if and only if
there is an entry t in row Ai where t > tAi

. The minimum bound may or may not be
stronger than the Eventuality minimum bound.

Lemma 6. There exists a solution that satisfies these three constraints.
Let tB′ be the root time in B′’s max clock, T ∗. From §6.2.2, B′ receives all messages

that B would have received after when B’s root time was tB′ , and also some messages
that B received before this time and filtered. But since our Eventuality constraint does not
require filtered messages to be placed in the table, there must be at least one solution to the
execution replay table, which is the solution that produces the pre-failure execution order.

Lemma 5 guarantees that as long as B′ can find a solution to the execution replay table,
then the solution corresponds to a valid execution order. Lemma 6 guarantees that at least
one solution exists. This section omits the proof that our proposed method for solving the
execution replay table (§3.3.2) finds a valid solution, which we believe is intuitive from the
description of the method.

6.2.4 The recovery protocol is correct with log truncation.
We will prove that log truncation does not affect the correctness of the recovery protocol.

Assume FSOC the controller asks A to resume sending messages to B′ at t∗A, except A
has already truncated payload t∗A. According to the truncation algorithm, t∗A ≤ f(A), where
f(A) is at most the tA in the tree clocks across all nodes (§3.4.2). Thus t∗A ≤ f(A) ≤ tA in
each of C’s max clocks. Let tA,min be the minimum of these values for tA. It follows that
t∗A ≤ tA,min. The algorithm tells A to resume sending messages at tA,min+1 > t∗A (§3.2.2),
a contradiction. Thus A does not truncate payloads it may be asked to send on recovery.

Assume FSOC the controller asks C for a diff B:t∗B, except C has already compacted
the diff. From the truncation algorithm, t∗B ≤ f(B). Thus from the definition of f(B),

48

t∗B ≤ f(B) ≤ tB in each of C’s max clocks, and each C will have already received B:t∗B if
C were an intended recipient. Let tB,min be the minimum of these values for tB and tB,max

the maximum. It follows that t∗B ≤ tB,min. This contradicts the recovery algorithm, which
requires tB,min < t∗B ≤ tB,max (§3.2.2). Thus C does not compact diffs it may be asked to
send on recovery.

6.2.5 Summary
In summary, Ci’s inputs are valid as long as B′ sends outputs that don’t violate Regularity,
while still satisfying Eventuality and Monotonicity. The messages that Ai send combined
with the ordering defined by the diffs in Ci enable B′ to determine an ordering of inputs to
send outputs to its children. Log truncation does not affect the correctness of the recovery
protocol. Any solution that satisfies the three execution replay constraints produces a valid
execution, and there are many possible algorithms that can find a solution. �

6.3 Proof: eventually, the system can recover again after
a failure.

After recovering B as B′, the system will eventually be able to recover from the failure
of another node because the recovery-related bookkeeping in all nodes will eventually be
consistent with an execution that could have happened had no failure happened at all.

The protocol can recover from a failure of B′. B′’s state is lost on failure and does not
affect the recovery of itself. Any bookkeeping state in Ai and Ci is consistent because the
nodes continued operating from a previously-valid execution.

The protocol can recover from a failure of Ci once Ci’s children have updated their max
clocks such that tB ≥ tB′ of B′’s max clock. tB′ is at least t∗B, the root time of T ∗ from the
recovery protocol after recovery, and B′ can only resume sending messages after this time.
Once the condition is met, the recovery protocol will then only ask B′ to resume sending
messages from t∗B + 1 or greater. The condition must eventually be met due to the periodic
update mechanism for log truncation (§3.4.2).

The protocol can recover from a failure of Ai onceB′’s siblings have updated their max
clocks such that tAi

≥ t∗Ai
, where t∗Ai

is the value of Ai’s time in T ∗ from the recovery
protocol. B′ can only send diffs of Ai after this time. Once the condition is met, the
recovery protocol will then only ask B′ to send diffs from tAi

+1 or greater. The condition
must eventually be met due to the periodic update mechanism for log truncation (§3.4.2).

The recovery protocol for all other failed nodes do not interact with Ai, B, or Ci.
Since these nodes are not in the neighborhoods of the failed nodes, the failed nodes are not
affected by the previous failure. �

49

50

Chapter 7

Extensions and Future Work

7.1 Stateful recovery
Being able to recover stateless nodes with tree clocks is already a big win, as the system can
leave the state in downstream nodes untouched. In future work, we would like to extend the
algorithm to stateful nodes using distributed snapshots [5] or replication [26, 24] to recover
state.

Distributed snapshots enable us to rollback a failed stateful node to a previously-consistent
state. Unlike existing implementations of distributed snapshots [5], we would like to avoid
rolling back other nodes in the graph, which requires global coordination to ensure exactly-
once semantics. Fortunately, tree clocks tell us exactly how to replay the message payloads
in upstream nodes to bring the state in the restarted node up-to-date with its children.

An alternative to recovering materialized state is replication. Backup replication is
expensive because it adds an extra RTT for each stateful node [24]. Chain replication adds
only half the RTT, and avoids having to persist state like in snapshots [26]. However,
replicas have to be on different machines, complicating how to efficiently partition nodes
onto computers to distribute load.

Since the outputs of stateful nodes depend on the results of previous outputs, stateful
nodes need to include the most recent diff from each parent that contributed to the output.
Fortunately, the only stateful node with multiple parents is the join operator, which has
exactly two parents. Thus including both parents in the diff does not significantly change
the diff size.

7.2 Multiple concurrent failures
The protocol as it is can already handle the concurrent failures of multiple nodes, as long as
the nodes are not adjacent to each other. The recovery-related metadata needed to recover
a failed node is in the node’s neighbors, and since none of these neighbors have failed, we
are able to recover.

We believe the protocol can be extended to handle the concurrent failures of multiple
adjacent nodes. Consider the failure of a connected subgraph with depth d. If the depth
of the min and max clocks increase to d + 2, and the depth of a message diff to d + 1,

51

then the recovery protocol can apply to the subgraph and its immediate neighbors, as if the
subgraph were the failed node. The subgraph’s children’s tree clocks can determine where
the subgraph’s parents should resume sending messages, and their diffs can determine what
order to process the received messages in.

To be able to handle the failure of any subset of nodes, d needs to be the depth of the
entire dataflow graph. Since we expect graphs to be large due to sharding, it is a convenient
property that d is unaffected by horizontal blowup. We can further optimize diffs by only
forwarding parts of the lineage that are non-deterministic. For example, if a node has
a single parent, we can deterministically replay its messages just from lineage about its
parent’s messages.

As seen in §5.1.1, the concept of a node in our protocol can include multiple dataflow
nodes, as long as messages are serialized at the inputs and the outputs, and computation
is deterministic. Thus in a sense, the concept of a node in our protocol is more a unit of
a recovery than a single dataflow node. We would like to explore in future work how to
implement this protocol as a more coarse-grained abstraction.

7.3 Other work
• Tree clock no-copy: Copying the payload into the payload log in the implementation

adds significant overhead due to the size of message data (§5.2). Since the logs are
stored in-memory, we can avoid this overhead by tracking a reference to the data
instead of copying it.

• Partial state: In Noria, partially-stateful nodes drop a message if the data has not
been queried by downstream nodes [16]. We may be able to treat the message like a
filtered message, where the children of the message are a function the message output
and the state. We must also handle Noria’s eviction messages.

• Dynamic dataflow graphs: Tree clocks rely on the structure of the graph to be static
in order to be accurate. The solution to this may be as simple as notifying affected
nodes of the changed graph structure before completing a migration.

52

Chapter 8

Conclusion

This thesis presents a causal logging approach to fault tolerance for streaming dataflow sys-
tems that rolls back and replays the execution of only the failed node, without any global
coordination. This approach piggybacks a small, constant-size tree clock onto each mes-
sage, incurring low runtime overheads and encapsulating enough information to recover
the system to a state that is indistinguishable from one that never failed at all. In future
work, we plan to extend the protocol to stateful nodes and multiple concurrent failures.

53

54

Bibliography

[1] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khe-
mani, Stefan Fulger, Pan Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon,
Larry Kai, Alexander Shraer, Arif Merchant, and Kfir Lev-Ari. Slicer: Auto-sharding
for datacenter applications. In 12th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 16), pages 739–753, Savannah, GA, November 2016.
USENIX Association.

[2] Tyler Akidau, Alex Balikov, Kaya Bekirolu, Slava Chernyak, Josh Haber-
manand Reuven Lax, Sam McVeetyand Daniel Mills, Paul Nordstrom, and Sam Whit-
tle. Millwheel: fault-tolerant stream processing at internet scale. Proceedings of the
VLDB Endowment, 6(11):1033–1044, August 2013.

[3] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J.
Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry, Eric
Schmidt, and Sam Whittle. The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order data process-
ing. Proceedings of the VLDB Endowment, 8(12):1792–1803, August 2015.

[4] Lorenzo Alvisi, Karan Bhatia, and Keith Marzullo. Causality tracking in causal
message-logging protocols. Distrib. Comput., 15(1):1–15, January 2002.

[5] Paris Carbone, Stephan Ewen, Seif Haridi, Asterios Katsifodimos, Volker Markl, and
Kostas Tzoumas. Apache flink: Stream and batch processing in a single engine. IEEE
Data Engineering, 38(4), December 2015.

[6] Paris Carbone, Gyula Fóra, Stephan Ewen, Seif Haridi, and Kostas Tzoumas.
Lightweight asynchronous snapshots for distributed dataflows. CoRR,
abs/1506.08603, 2015.

[7] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry,
Robert Bradshaw, and Nathan Weizenbaum. Flumejava: Easy, efficient data-parallel
pipelines. SIGPLAN Not., 45(6):363–375, June 2010.

[8] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, February 1985.

[9] K. Mani Chandy and Leslie Lamport. Distributed snapshots: Determining global
states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, February 1985.

55

[10] Bernadette Charron-Bost. Concerning the size of logical clocks in distributed systems.
Inf. Process. Lett., 39:11–16, 07 1991.

[11] James Cheney, Laura Chiticariu, and Wang-chiew Tan. Provenance in databases:
Why, how, and where. Foundations and Trends in Databases, 1:379–474, 01 2009.

[12] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large
clusters. In OSDI’04: Sixth Symposium on Operating System Design and Implemen-
tation, pages 137–150, San Francisco, CA, 2004.

[13] Elmootazbellah Elnozahy. Manetho: Fault tolerance in distributed systems using
rollback-recovery and process replication. 01 1994.

[14] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency
and predicate locks in a database system. Commun. ACM, 19(11):624–633, November
1976.

[15] Daniel Ford, Francois Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in globally dis-
tributed storage systems. In Proceedings of the 9th USENIX conference on Operating
systems design and implementation (OSDI), pages 61–74, 2010.

[16] Jon Gjengset, Malte Schwarzkopf, Jonathan Behrens, Lara Timbó Araújo, Martin Ek,
Eddie Kohler, M. Frans Kaashoek, and Robert Morris. Noria: dynamic, partially-
stateful data-flow for high-performance web applications. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 18), pages 213–231,
Carlsbad, CA, October 2018. USENIX Association.

[17] Jim Gray and Daniel P. Siewiorek. High-availability computer systems. Computer,
24(9):39–48, September 1991.

[18] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad:
Distributed Data-parallel Programs from Sequential Building Blocks. In Proceedings
of the 2nd ACM SIGOPS European Conference on Computer Systems (EuroSys), pages
59–72, March 2007.

[19] Martin Kleppmann and Jay Kreps. Kafka, Samza and the Unix philosophy of dis-
tributed data. IEEE Data Engineering Bulletin, 38(4):4–14, December 2015.

[20] E. A. Lee. Consistency in dataflow graphs. IEEE Transactions on Parallel and Dis-
tributed Systems, 2(2):223–235, April 1991.

[21] Frank McSherry, Derek G. Murray, Rebecca Isaacs, and Michael Isard. Differential
dataflow. In Proceedings of the 6th Biennial Conference on Innovative Data Systems
Research (CIDR), January 2013.

[22] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martı́n Abadi. Naiad: A Timely Dataflow System. In Proceedings of the 24th

ACM Symposium on Operating Systems Principles (SOSP), pages 439–455, Novem-
ber 2013.

56

[23] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: An approach to
designing fault-tolerant computing systems. ACM Trans. Comput. Syst., 1:222–238,
1981.

[24] Mehul A. Shah, Joseph M. Hellerstein, and Eric Brewer. Highly available, fault-
tolerant, parallel dataflows. In Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’04, pages 827–838, New York, NY,
USA, 2004. ACM.

[25] Mukesh Singhal and Ajay Kshemkalyani. An efficient implementation of vector
clocks. Information Processing Letters, 43:47–52, 08 1992.

[26] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high
throughput and availability. In Proceedings of the 6th Conference on Symposium
on Operating Systems Design & Implementation - Volume 6, OSDI’04, pages 7–7,
Berkeley, CA, USA, 2004. USENIX Association.

[27] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali Gh-
odsi, Michael J. Franklin, Benjamin Recht, and Ion Stoica. Drizzle: Fast and adapt-
able stream processing at scale. In Proceedings of the 26th Symposium on Operating
Systems Principles, SOSP ’17, pages 374–389, New York, NY, USA, 2017. ACM.

[28] Stephanie Wang, John Liagouris, Robert Nishihara, Philipp Moritz, Ujval Misra,
Alexey Tumanov, and Ion Stoica. Lineage stash: Fault tolerance off the critical path.
In Proceedings of Symposium on Operating Systems Principles, SOSP ’19, 2019.

[29] Adam Warski. What does kafka’s exactly-once processing really mean? Blog post,
July 2017.

[30] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In
Proceedings of the 9th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI), pages 15–28, April 2012.

[31] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion
Stoica. Discretized streams: Fault-tolerant streaming computation at scale. In Pro-
ceedings of the 24th ACM Symposium on Operating Systems Principles (SOSP), pages
423–438, November 2013.

57

