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Internet connection-splitting — E2E connection
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* Traditional “loss-based” congestion-control algorithms (e.g. CUBIC)
treat wireless loss as network congestion in an end-to-end setting



Internet connection-splitting — split connection
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* Customized congestion control (“split CUBIC”) on each path segment
* Widely deployed: 20-40% of paths, especially satellite and wireless'-?



A lot has changed since these PEPs
were first deployed in the 1990s...



QUIC made connection-splitting impossible.

l—-) Encrypted transport protocol designed to allow the protocol to evolve over time
and to improve performance for HTTPS traffic.
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BBR made connection-splitting unnecessary.

l—) Congestion-control algorithm that de-emphasizes loss as a congestion signal.
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7.3 there's been a sharp decline of PEPs in mobile networks in the last years. BBR is a cause for this.
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steady trend, while those without had a significant increase in throughput. l.e. as measured bye 3rd party
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Is it true? Did BBR and QUIC make
connection-splitting obsolete?



Re: Is splitting obsolete? It’s complicated!

[EIETERH TCP BBR has benefitted more from splitting over time.

TCP BBRv3 even benefits in some classes of network
paths where TCP CUBIC does not.

MQUIC implementations of the “same” congestion-control
schemes vary significantly.



Measurement Study

* Plan: Evaluate various congestion-control schemes in a variety of
network settings, both with and without a connection-splitting PEP.

* Question: Does the PEP improve performance with BBR/QUIC?
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Measurement Methodology

1. Pick a congestion control scheme.
2. Emulate two-segment topology: bandwidth, loss, delay.
3. Compare end-to-end vs. split throughput of HTTPS download.
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Limitations

* 100% emulation study using tc-netem (not real-world)
* Metric is long-lived, full-throttle throughput only (not latency)
* Single-flow CCA environment (has fairness implications)
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Finding 1: TCP BBR has benefitted more from splitting over time.
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Why? BBRv2+ responded to concerns about TCP friendliness in BBRv1.
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Does this generalize to other network settings?

Split Throughput Heuristic: Estimate split throughput
as the minimum of the measured end-to-end
throughputs on each segment of the split path.
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Cache end-to-end measurements in a heatmap
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Apply the heuristic to estimate split throughput
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Estimate end-to-end throughput in a split path
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Finding 2: TCP BBRv3 even benefits in some classes of network

paths where TCP CUBIC does not.

\C 54 oC o 2g7C cou: :
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Filter BBRvl CUBIC BBRv3

Initial 7875 7875 7875
Split imprvmnt. >3x 0 2231 234

Split utilization > 0.5 0 942 188
Asymmetric, last-mile 0 942 38
Asymmetric, lossy 0 0 72
Symmetric, lossy 0 0 78
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Finding 2: TCP BBRv3 even benefits in some classes of network

paths where TCP CUBIC does not.
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Heatmaps for characterizing end-to-end behavior
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Finding 3: QUIC implementations of the “same” congestion-

control schemes vary significantly, and with Linux TCP’s.
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Finding 3: QUIC implementations of the “same” congestion-

control schemes vary significantly, and with Linux TCP’s.
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These results have implications for the throughput of the various
user-space(!) QUIC implementations in split network path scenarios.
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Calls to Action

* End-to-end congestion control

* Referto CC schemes by implementation/protocol/algorithm/version, e.g.
not just “BBR” or even “QUIC BBRv1”, but “Chromium QUIC BBRv1”

* Standardize what it means to conform to a particular CCA standard,
perhaps by creating performance test suites

* Connection-splitting
* Protocol-agnostic ways to emulate PEPs®

* Real-world studies to validate speculated performance improvements
e Study other metrics improved by PEPs
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Summary

1. TCP BBR has benefitted more from splitting over time since “v1”in 2016.
2. TCP BBRv3 even benefits in some settings where TCP CUBIC does not.

3. QUIC implementations of the same CC schemes vary significantly.

Calls to action: Address disparities between different implementations of the
same congestion-control algorithms, and develop protocol-agnostic methods
to emulate the performance benefits of PEPs.

https://github.com/StanfordSNR/connection-splitting
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