Internet Connection Splitting:
What’s Old is New Again

Gina Yuan, Thea Rossman, Keith Winstein

Stanford University
July 8, 2025, USENIX ATC, Boston, MA

Internet connection-splitting — E2E connection

lossy, reliable,
low-delay high-delay
superslow...&@) Segment segment

NG

You Proxy Web Server
(on a train) O (Wi-Fi AP) g B B W) (cloud)

* Traditional “loss-based” congestion-control algorithms (e.g. CUBIC)
treat wireless loss as network congestion in an end-to-end setting

Internet connection-splitting — split connection

connection-splitting TCP PEP
(performance-enhancing proxy)

. \(H)

Proxy Web Server
(on a train) m (Wi-Fi AP) « AHHHHHH » (cloud)

* Customized congestion control (“split CUBIC”) on each path segment
* Widely deployed: 20-40% of paths, especially satellite and wireless'-?

A lot has changed since these PEPs
were first deployed in the 1990s...

QUIC made connection-splitting impossible.

l—-) Encrypted transport protocol designed to allow the protocol to evolve over time
and to improve performance for HTTPS traffic.

TCP Segment VS. QUIC Segment

Source Port [Destination Port
Sequence number
Acknowledgment number

DO| RSV |Flags Window
Checksum | Urgent Pointer |@#$%"
Options (Encrypted Data)

TLS-Encrypted Data

BBR made connection-splitting unnecessary.

l—) Congestion-control algorithm that de-emphasizes loss as a congestion signal.

3= panrg > ietf-121

NOV 7, 2024
;:‘g'g"‘; Frode Kileng 08:36
7.3 there's been a sharp decline of PEPs in mobile networks in the last years. BBR is a cause for this.

(When AWS switched to BBR 2-3 years ago, throughput of moblle networks with PEPs either declined or a 08:39

steady trend, while those without had a significant increase in throughput. l.e. as measured bye 3rd party
benchmarks, e.g. Tutela)

Is it true? Did BBR and QUIC make
connection-splitting obsolete?

Re: Is splitting obsolete? It’s complicated!

[EIETERH TCP BBR has benefitted more from splitting over time.

TCP BBRv3 even benefits in some classes of network
paths where TCP CUBIC does not.

MQUIC implementations of the “same” congestion-control
schemes vary significantly.

Measurement Study

* Plan: Evaluate various congestion-control schemes in a variety of
network settings, both with and without a connection-splitting PEP.

* Question: Does the PEP improve performance with BBR/QUIC?

implementation/protocol/algorithm/version

Linux
=L CUBIC, 2006
BBRv1, 2016
CLOUDFLARE BBRV2,2@19
quiche

BBRv3, 2023

Wi (So00gle

picoquic

QUICHE

Measurement Methodology

1. Pick a congestion control scheme.
2. Emulate two-segment topology: bandwidth, loss, delay.
3. Compare end-to-end vs. split throughput of HTTPS download.

(1))

N\ J

End-to-end connection Split connection

10

Limitations

* 100% emulation study using tc-netem (not real-world)
* Metric is long-lived, full-throttle throughput only (not latency)
* Single-flow CCA environment (has fairness implications)

11

Finding 1: TCP BBR has benefitted more from splitting over time.

Bl Split W End-to-End

100ms 0% 20Mbit/s, 1ms 4% 20Mbit/s

(-

2 1.00

: B E B
v 0.50 A i

(@)

T H B E B
S 0.00 -

(an)]

CUBIC BBRv1 BBRv2 BBRvV3
(2006) (2016) (2019) (2023)

TCP Congestion Control Algorithms

Why? BBRv2+ responded to concerns about TCP friendliness in BBRv1.

12

Does this generalize to other network settings?

Split Throughput Heuristic: Estimate split throughput
as the minimum of the measured end-to-end
throughputs on each segment of the split path.

13

Cache end-to-end measurements in a heatmap

1.0
100
0.8 &
80 S
— ©
0 N
€ 60- 0.6 5
Z 5
]
3 40 0.4%
o o
20 A =
02,5
1 -
0.0

Loss (%)

TCP CUBIC (2006)

14

Apply the heuristic to estimate split throughput

0 Split Utilization
°*2 min(0.77, 0.85) = (A%

Loss (%)

TCP CUBIC (2006)

15

Estimate end-to-end throughput in a split path

L
o

Split Utilization
min(0.77, 0.85) = (V¥

e
©

o
o

Link Rate Utilization

0.08 0.07

End-to-End Utilization

bw = min(bw1, bw2) = min(10, 10) =10

| , delay = delay1 + delay2 =100+ 1= 100
Loss (%) loss % loss1 +loss2=0+4=4

TCP CUBIC (2006) 0.04

0.12 0.09

©
>

0.22 018

o
[N}

o
o

16

Finding 2: TCP BBRv3 even benefits in some classes of network

paths where TCP CUBIC does not.

\C 54 oC o 2g7C cou: :
5:6-5=150end-to-end settings

Filter BBRvl CUBIC BBRv3

Initial 7875 7875 7875
Split imprvmnt. >3x 0 2231 234

Split utilization > 0.5 0 942 188
Asymmetric, last-mile 0 942 38
Asymmetric, lossy 0 0 72
Symmetric, lossy 0 0 78

17

Finding 2: TCP BBRv3 even benefits in some classes of network

paths where TCP CUBIC does not.

EEm Split mwm End-to-End Il Split mw End-to-End Bl Split W End-to-End
S 3 155 100ms 0% 20Mbit/s, 1ms 4% 20Mbit/s 2 55 100ms 2% 20Mbit/s, 1ms 2% 20Mbit/s 5 00 40ms 2% 40Mbit/s, 40ms 2% 40Mbit/s
© © ©
Sors{——— ﬁi i £ 0.75 1 £ 0.75 - |
3 0.50 A1 ‘ 3 0.50 A1 3 0.50 A
: Bl 5 5
= CUBIC BBRv1 BBRv2 BBRv3 @ CUBIC BBRv1 BBRv2 BBRv3 = CUBIC BBRv1 BBRv2 BBRv3
(2006) (2016) (2019) (2023) (2006) (2016) (2019) (2023) (2006) (2016) (2019) (2023)
TCP Congestion Control Algorithms TCP Congestion Control Algorithms TCP Congestion Control Algorithms
Class |. Asymmetric, last-mile Class ll. Asymmetric, lossy Class lll. Symmetric, lossy
traditional PEP deployments with low-resource networks, wireless ad-hoc and satellites
wireless link or rate policer regions with no IXPs with lossy "middle-miles”

y .37
E ;
&

18

Heatmaps for characterizing end-to-end behavior

100 -

Delay (ms)
N iy)] o0}
o o o o

=
I

Loss (%)

TCP CUBIC (2006)

BBR over time

100 A 0.81 0.79 0.75 0.76
80 - .83 0.79 0.77
I ‘
£ 601 0.80 0.79
> |
T 40
]

20 A

1_

o 1 2 3 4
Loss (%)

TCP BBRv1 (2016)

Delay (ms)

LR 0.81 0.75

[ee]
o
1

)]
o
1

B
o
1

N
o
1

=
1

Loss (%)

TCP BBRv2 (2019)

1004 o

Delay (ms)
3

N
o
!

=
1

(o))
o
1

o
o
1

Loss (%)

TCP BBRv3 (2023)

19

[=) o (@]
> o f")
Link Rate Utilization

o
[N}

o
o

Finding 3: QUIC implementations of the “same” congestion-

control schemes vary significantly, and with Linux TCP’s.

-

CLOUDFLARE | ke O(quULC

oodl

1.0
100 0.87 0.83 0.77 0.70 0.50 0.46 O. 100
086
804 5 ! : 0.69 0.56 0.55 0. 80 =
m m m m 06 N
£ £ 604 G 5) 0.64 £ 0.63 0.60 £ 60 °E
BBRv3 : 5 5 5 :
2 o 404 5 ; ; 0.60 < 0.69 0.66 2 40 0.4g
[a} [a) o [a} o
20 g ; ! 0.73 0.71 0.70 0. 20 02 E
R
0.88 0.84 0.
! 1 0.0
2 3 0 1 2 3 4 0 1 2 3 4 1 2 3
Loss (%) Loss (%) Loss (%) Loss (%)
: 1.0
1004 ¢ 0.81 0.79 0.50 0.47 0.82 0.84
086
801 0.85 0.83 0.53 0.52 0.85 0.82 =
i n m i 0
ISR 088 0.86 085 £ £ 0.64 0.62 £ 0.88 0.87 °B
BBI {V1 E‘40 0.89 5y) 0.70 0.66) 04 g
[} : . : [} [} . : [} -
[a} o o o <
0.70 0.68 c
20 0.2 £
0.86 0.84
1 0.0
0 1 2 3 4
Loss (%) Loss (%) Loss (%)
1.0
100
086
80 _ _ _ ©
) 0 0 0 0.6 N
E 60 £ £ E o
> > > > o
T 40 K] f f 0.4
(9] (9] (9] (] o
[a} o [a) [a} o
i =
20 025
1 1 1 0.0
0 1 2 3 4 0 1 2 3 4 20

Loss (%) Loss (%) Loss (%) Loss (%)

Finding 3: QUIC implementations of the “same” congestion-

control schemes vary significantly, and with Linux TCP’s.

BEm Split mew End-to-End Bl Split W End-to-End
= 1ms 2% 10Mbit/s, 80ms 2% 40Mbit/s = 20ms 0% 40Mbit/s, 1ms 4% 50Mbit/s
© 1.00 @ 1.00
O O
S 0.75 g 0.75
= 0.50 = 0.50 -

S ks

= 0.25 5 0.25 1

N N

= 0.00 - = 0.00-

= Linux Google Cloudflare IETF > Linux Google Cloudflare IETF

picoquic TCP quiche quiche picoquic

TCP quiche quiche
BBRv3 Implementations

CUBIC Implementations
These results have implications for the throughput of the various
user-space(!) QUIC implementations in split network path scenarios.

21

Calls to Action

* End-to-end congestion control

* Referto CC schemes by implementation/protocol/algorithm/version, e.g.
not just “BBR” or even “QUIC BBRv1”, but “Chromium QUIC BBRv1”

* Standardize what it means to conform to a particular CCA standard,
perhaps by creating performance test suites

* Connection-splitting
* Protocol-agnostic ways to emulate PEPs®

* Real-world studies to validate speculated performance improvements
e Study other metrics improved by PEPs

22

ARTIFACT ARTIFACT ARTIFACT
EVALUATED EVALUATED EVALUATED

Summary

1. TCP BBR has benefitted more from splitting over time since “v1”in 2016.
2. TCP BBRv3 even benefits in some settings where TCP CUBIC does not.

3. QUIC implementations of the same CC schemes vary significantly.

Calls to action: Address disparities between different implementations of the
same congestion-control algorithms, and develop protocol-agnostic methods
to emulate the performance benefits of PEPs.

https://github.com/StanfordSNR/connection-splitting

23

https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting

