
Internet Connection Splitting:
What’s Old is New Again

Gina Yuan, Thea Rossman, Keith Winstein
Stanford University

July 8, 2025, USENIX ATC, Boston, MA

Internet connection-splitting – E2E connection

You
(on a train)

Web Server
(cloud)

Proxy
(Wi-Fi AP)

🚆👩💻 ☁TCP

super slow... 😭

2

• Traditional “loss-based” congestion-control algorithms (e.g. CUBIC)
treat wireless loss as network congestion in an end-to-end setting

lossy,
low-delay
segment

reliable,
high-delay
segment

connection-splitting TCP PEP
(performance-enhancing proxy)

Internet connection-splitting – split connection

You
(on a train)

Web Server
(cloud)

Proxy
(Wi-Fi AP)

🚆👩💻 ☁TCP

• Customized congestion control (“split CUBIC”) on each path segment
• Widely deployed: 20-40% of paths, especially satellite and wireless1,2

[1] Honda et. al. Is it Still Possible to Extend TCP? IMC, 2011.
[2] Edeline & Donnet. A Bottom-Up Investigation of the Transport-Layer Ossification. TMA, 2019. 3

nice! 😎

A lot has changed since these PEPs
were first deployed in the 1990s...

4

QUIC made connection-splitting impossible.

5[3] Langley et. al. The QUIC Transport Protocol: Design and Internet-Scale Deployment. SIGCOMM, 2017.

Source Port Destination Port
Sequence number

Acknowledgment number
DO RSV Flags Window

Checksum Urgent Pointer
Options

TLS-Encrypted Data

TCP Segment vs.

!@#$%^
(Encrypted Data)

QUIC Segment

Encrypted transport protocol designed to allow the protocol to evolve over time
and to improve performance for HTTPS traWic.

BBR made connection-splitting unnecessary.

6

Congestion-control algorithm that de-emphasizes loss as a congestion signal.

[4] Cardwell, Cheng, Gunn, Yeganeh, & Van Jacobson. BBR: Congestion-Based Congestion Control. Communications of the ACM, 2017.

Is it true? Did BBR and QUIC make
connection-splitting obsolete?

7

Re: Is splitting obsolete? It’s complicated!

8

Finding 1: TCP BBR has benefitted more from splitting over time.
Finding 2: TCP BBRv3 even benefits in some classes of network
paths where TCP CUBIC does not.
Finding 3: QUIC implementations of the “same” congestion-control
schemes vary significantly.

Measurement Study
• Plan: Evaluate various congestion-control schemes in a variety of

network settings, both with and without a connection-splitting PEP.
• Question: Does the PEP improve performance with BBR/QUIC?

9

×

Christian Huitema
picoquic QUICHE

quiche

TCP

BBRv3,2023

BBRv1,2016

BBRv2,2019

CUBIC,2006

implementation/protocol/algorithm/version

Measurement Methodology
1. Pick a congestion control scheme.
2. Emulate two-segment topology: bandwidth, loss, delay.
3. Compare end-to-end vs. split throughput of HTTPS download.

10

HTTP
GET

End-to-end connection

vs.

Split connection

HTTP
GET

Limitations

• 100% emulation study using tc-netem (not real-world)
• Metric is long-lived, full-throttle throughput only (not latency)
• Single-flow CCA environment (has fairness implications)

11

Finding 1: TCP BBR has benefitted more from splitting over time.

12

Why? BBRv2+ responded to concerns about TCP friendliness in BBRv1.

Does this generalize to other network settings?

13

Split Throughput Heuristic: Estimate split throughput
as the minimum of the measured end-to-end
throughputs on each segment of the split path.

Cache end-to-end measurements in a heatmap

14

TCP CUBIC (2006)

Apply the heuristic to estimate split throughput

15

TCP CUBIC (2006)

Split Utilization
min(0.77, 0.85) = 0.77

TCP CUBIC (2006)

Estimate end-to-end throughput in a split path

16

Split Utilization
min(0.77, 0.85) = 0.77

End-to-End Utilization
bw = min(bw1, bw2) = min(10, 10) = 10
delay = delay1 + delay2 = 100 + 1 ≈ 100
loss ≈ loss1 + loss2 = 0 + 4 = 4
0.04

Finding 2: TCP BBRv3 even benefits in some classes of network
 paths where TCP CUBIC does not.

17

15 · 21 · 25 = 7875 split settings
5 · 6 · 5 = 150 end-to-end settings

Class I. Asymmetric, last-mile
traditional PEP deployments with

wireless link or rate policer

🗼🛜📡

Class II. Asymmetric, lossy
low-resource networks,

regions with no IXPs

📱🌍

Class III. Symmetric, lossy
wireless ad-hoc and satellites

with lossy ”middle-miles”

📱🛰

Finding 2: TCP BBRv3 even benefits in some classes of network
 paths where TCP CUBIC does not.

18

TCP CUBIC (2006)

Heatmaps for characterizing end-to-end behavior

BBR over time

19

TCP BBRv1 (2016) TCP BBRv2 (2019) TCP BBRv3 (2023)

BBRv3

BBRv1

CUBIC

picoquic

Finding 3: QUIC implementations of the “same” congestion-
 control schemes vary significantly, and with Linux TCP’s.

20

These results have implications for the throughput of the various
user-space(!) QUIC implementations in split network path scenarios.

Finding 3: QUIC implementations of the “same” congestion-
 control schemes vary significantly, and with Linux TCP’s.

21

Calls to Action

• End-to-end congestion control
• Refer to CC schemes by implementation/protocol/algorithm/version, e.g.

not just “BBR” or even “QUIC BBRv1”, but “Chromium QUIC BBRv1”
• Standardize what it means to conform to a particular CCA standard,

perhaps by creating performance test suites

• Connection-splitting
• Protocol-agnostic ways to emulate PEPs5

• Real-world studies to validate speculated performance improvements
• Study other metrics improved by PEPs

22
[5] Yuan, Sotoudeh, Zhang, Welzl, Mazières, & Winstein. Sidekick: In-Network Assistance for Secure End-to-End Transport Protocols.
NSDI, 2024.

Summary

1. TCP BBR has benefitted more from splitting over time since “v1” in 2016.
2. TCP BBRv3 even benefits in some settings where TCP CUBIC does not.
3. QUIC implementations of the same CC schemes vary significantly.

Calls to action: Address disparities between diWerent implementations of the
same congestion-control algorithms, and develop protocol-agnostic methods
to emulate the performance benefits of PEPs.

https://github.com/StanfordSNR/connection-splitting

23

https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting
https://github.com/StanfordSNR/connection-splitting

